This paper presents an approach for generating curvature-adaptive finishing tool paths with bounded error directly from massive point data in three-axis computer numerical control (CNC) milling. This approach uses the moving least-squares (MLS) surface as the underlying surface representation. A closed-form formula for normal curvature computation is derived from the implicit form of MLS surfaces. It enables the generation of curvature-adaptive tool paths from massive point data that is critical for balancing the trade-off between machining accuracy and speed. To ensure the path accuracy and robustness for arbitrary surfaces where there might be an abrupt curvature change, a novel guidance field algorithm is introduced. It overcomes potential excessive locality of curvature-adaptive paths by examining the neighboring points’ curvature within a self-updating search bound. Our results affirm that the combination of curvature-adaptive path generation and the guidance field algorithm produces high-quality numerical control (NC) paths from a variety of point cloud data with bounded error.

1.
Choi
,
Y. K.
,
Banerjee
,
A.
, and
Lee
,
J. W.
, 2007, “
Tool Path Generation for Free Form Surfaces Using Bezier Curves/Surfaces
,”
Comput. Ind. Eng.
,
52
(
4
), pp.
486
501
. 0360-8352
2.
Peng
,
Y. H.
, and
Yin
,
Z. W.
, 2008, “
The Algorithms for Trimmed Surfaces Construction and Tool Path Generation in Reverse Engineering
,”
Comput. Ind. Eng.
,
54
(
3
), pp.
624
633
. 0360-8352
3.
Yin
,
Z.
, 2004, “
Adaptive Tool Path Generation From Measured Data
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
218
(
1
), pp.
103
111
.
4.
Lin
,
A. C.
, and
Liu
,
H. T.
, 1998, “
Automatic Generation of NC Cutter Path From Massive Data Points
,”
CAD
0010-4485,
30
(
1
), pp.
77
90
.
5.
Feng
,
H. Y.
, and
Teng
,
Z. J.
, 2005, “
Iso-Plannar Piecewise Linear NC Tool Path Generation From Discrete Measured Data Points
,”
CAD
0010-4485,
37
(
1
), pp.
55
64
.
6.
Chui
,
K. L.
, and
Lee
,
T. C.
, 2002, “
Direct Tool-Path Generation From Massive Point Input
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
216
(
2
), pp.
199
206
.
7.
Park
,
S. C.
, and
Chung
,
Y. C.
, 2003, “
Tool-Path Generation From Measured Data
,”
CAD
0010-4485,
35
(
5
), pp.
467
475
.
8.
Kim
,
S. J.
, and
Yang
,
M. Y.
, 2005, “
Triangular Mesh Offset for Generalized Cutter
,”
CAD
0010-4485,
37
(
10
), pp.
999
1014
.
9.
Choi
,
B. K.
, and
Jerard
,
R. B.
, 1998,
Sculptured Surface Machining: Theory and Applications
,
Kluwer
,
Dordrecht
.
10.
Choi
,
Y. K.
, and
Banerjee
,
A.
, 2007, “
Tool Path Generation and Tolerance Analysis for Free-Form Surfaces
,”
Int. J. Mach. Tools Manuf.
,
47
(
3–4
), pp.
689
696
. 0890-6955
11.
Ding
,
S.
,
Mannan
,
M. A.
,
Poo
,
A. N.
,
Yang
,
D.
, and
Han
,
Z.
, 2003, “
Adaptive Isoplanar Tool Path Generation for Machining of Free-Form Surfaces
,”
CAD
0010-4485,
35
(
2
), pp.
141
153
.
12.
Lee
,
S. H.
,
Kim
,
H. C.
,
Hur
,
S. M.
, and
Yang
,
D. Y.
, 2002, “
STL File Generation From Measured Point Data by Segmentation and Delaunay Triangulation
,”
CAD
0010-4485,
34
(
10
), pp.
691
704
.
13.
Levin
,
D.
, 1998, “
The Approximation Power of Moving Least-Squares
,”
Math. Comput.
0025-5718,
67
(
224
), pp.
1517
1531
.
14.
Levin
,
D.
, 2003, “
Mesh-Independent Surface Interpolation
,”
Geometric Modeling for Scientific Visualization
,
Springer-Verlag
,
Berlin
, pp.
37
49
.
15.
Amenta
,
N.
, and
Kil
,
Y. J.
, 2004, “
Defining Point-Set Surfaces
,”
ACM Trans. Graphics
0730-0301,
23
(
3
), pp.
264
270
.
16.
Amenta
,
N.
, and
Kil
,
Y. -J.
, 2004, “
The Domain of a Point Set Surface
,”
Eurographics Symposium on Point-Based Graphics
, pp.
139
147
.
17.
Alexa
,
M.
,
Behr
,
J.
,
Cohen-Or
,
D.
,
Fleishman
,
S.
, and
Levin
,
D.
, 2001, “
Point Set Surfaces
,”
Proceedings of the Conference on Visualization ‘01, SESSION: Session P1: Point-Based Rendering and Modeling
, pp.
21
28
.
18.
Dey
,
T. K.
,
Goswami
,
S.
, and
Sun
,
J.
, 2005, “
Extremal Surface Based Projections Converge and Reconstruct With Isotopy
,” Technical Report No. OSU-CISRC-4–05–TR25.
19.
Dey
,
T. K.
, and
Sun
,
J.
, 2005, “
Adaptive MLS Surfaces for Reconstruction With Guarantees
,”
Eurographics Symposium on Geometry Processing
, pp.
43
52
.
20.
Alexa
,
M.
,
Behr
,
J.
,
Cohen-Or
,
D.
,
Fleishman
,
S.
,
Levin
,
D.
, and
Silva
,
C. T.
, 2003, “
Computing and Rendering Point Set Surfaces
,”
IEEE Trans. Vis. Comput. Graph.
1077-2626,
9
(
1
), pp.
3
15
.
21.
Scheidegger
,
C. E.
,
Fleishman
,
S.
, and
Silva
,
C. T.
, 2005, “
Triangulating Point Set Surfaces With Bounded Error
,”
Eurographics Symposium on Geometry Processing
, pp.
63
72
.
22.
Hoppe
,
H.
,
DeRose
,
T.
,
Duchamp
,
T.
,
McDonald
,
J.
, and
Stuetzle
,
W.
, 1992, “
Surface Reconstruction From Unorganized Points
,”
Comput. Graph.
0097-8930,
26
(
2
), pp.
71
78
.
23.
Pauly
,
M.
, 2003, “
Point Primitives for Interactive Modeling and Processing of 3D Geometry
,” Ph.D. thesis, Computer Science Department, ETH Zurich.
24.
Goldman
,
R.
, 2005, “
Curvature Formulas for Implicit Curves and Surfaces
,”
Comput. Aided Geom. Des.
,
22
(
7
), pp.
632
658
. 0167-8396
25.
Yang
,
P.
, and
Qian
,
X. P.
, 2008, “
Adaptive Slicing of Moving Least Squares Surfaces: Toward Direct Manufacturing of Point Set Surfaces
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
8
(
3
), p.
031003
.
26.
Yang
,
P. H.
, and
Qian
,
X. P.
, “
Direct Computing of Surface Curvatures for Point-Set Surfaces
,”
Proceedings of 2007 IEEE/Eurographics Symposium on Point-Based Graphics (PBG)
,
Prague, Czech Republic
, Sept. 2007.
You do not currently have access to this content.