This paper proposes a comprehensive quality prediction framework for multistage machining processes, connecting engineering design with the activities of quality modeling, variation propagation modeling and calculation, dimensional variation evaluation, dimensional variation analysis, and quality feedback. Presented is an integrated information model utilizing a hybrid (feature/point-based) dimensional accuracy and variation quality modeling approach that incorporates Monte Carlo simulation, variation propagation, and regression modeling algorithms. Two important variations (kinematic and static) for the workpiece, machine tool, fixture, and machining processes are considered. The objective of the framework is to support the development of a quality prediction and analysis software tool that is efficient in predicting part dimensional quality in a multistage machining system (serial, parallel, or hybrid) from station level to system level.

1.
Zhang
,
B.
, and
Ni
,
J.
, 2003, “
Adaptive Product, Process and Tooling Design Strategy for Optimal Dimensional Quality of Automotive Body Assemblies
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
835
843
.
2.
Cai
,
W.
,
Hu
,
S. J.
, and
Yuan
,
J. X.
, 1996, “
Deformable Sheet Metal Fixturing: Principles, Algorithms, and Simulations
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
118
, pp.
318
324
.
3.
Hu
,
S.
, and
Wu
,
S. M.
, 1992, “
Identifying Root Causes of Variation in Automotive Body Assembly Using Dimensional Analysis
,”
Trans. North Am. Manuf. Res. Inst. SME
1047-3025, pp.
311
316
.
4.
Ceglarek
,
D.
, and
Shi
,
J.
, 1995, “
Dimensional Variation Reduction for Automotive Body Assembly
,”
Manuf. Rev.
0896-1611,
8
(
2
), pp.
139
154
.
5.
Ding
,
Y.
,
Ceglarek
,
D.
, and
Shi
,
J. J.
, 2002, “
Design Evaluation of Multi-Station Assembly Processes by Using State Space Approach
,”
ASME J. Mech. Des.
1050-0472,
124
(
3
), pp.
408
418
.
6.
Parkinson
,
A.
, 1995, “
Robust Mechanical Design Using Engineering Models
,”
ASME J. Mech. Des.
1050-0472,
117
, pp.
48
54
.
7.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K.-L.
, and
Mistree
,
F.
, 1996, “
A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
ASME J. Mech. Des.
1050-0472,
118
, pp.
478
485
.
8.
Agapiou
,
J. S.
,
Steinhilper
,
E.
,
Gu
,
F.
, and
Bandyopadhyay
,
P.
, 2003, “
Modeling Machining Errors on a Transfer Line to Predict Quality
,”
J. Manuf. Process.
1526-6125,
5
(
1
), pp.
1
12
.
9.
Mantripragada
,
R.
, and
Whitney
,
D. E.
, 1999, “
Modeling and Controlling Variation Propagation in Mechanical Assemblies Using State Transition Models
,”
IEEE Trans. Rob. Autom.
1042-296X,
15
, pp.
124
140
.
10.
Huang
,
Q.
,
Zhou
,
S.
, and
Shi
,
J.
, 2002, “
Diagnosis of Multi-Operational Machining Processes Through Variation Propagation Analysis
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
18
, pp.
223
239
.
11.
Hockenberger
,
M. J.
, and
De Meter
,
E. C.
, 1996, “
The Application of Meta Functions to the Quasi-Static Analysis of Workpiece Displacement Within a Machining Fixture
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
118
, pp.
325
331
.
12.
Evans
,
D. H.
, 1975, “
Statistical Tolerancing: The State of the Art—Part II. Methods for Estimating Moments
,”
J. Quality Technol.
0022-4065,
7
(
1
), pp.
1
12
.
13.
Hines
,
W. W.
, and
Montgomery
,
D. C.
, 1990,
Probability and Statistics in Engineering and Management Science
,
Wiley
, New York.
14.
Xie
,
J. Q.
,
Agapiou
,
J. S.
,
Stephenson
,
D. A.
, and
Hilber
,
P.
, 2003, “
Machining quality Analysis of an Engine Cylinder Head Using Finite Element Methods
,”
J. Manuf. Process.
1526-6125,
5
(
2
), pp.
170
184
.
15.
Liu
,
S. C.
, and
Hu
,
S. J.
, 1997, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
, pp.
368
374
.
16.
Dragan
,
D.
, and
Jun
,
N.
, 2003, “
Dimensional Errors of Fixtures, Locating and Measurement Datum Features in the Stream of Variation Modeling in Machining
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
716
730
.
17.
Huang
,
Q.
,
Zhou
,
N.
, and
Shi
,
J.
, 2000, “
Stream of Variation Modeling and Diagnosis of Multi-Station Machining Processes
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition 2000
,
November 5-10, Orlando, FL, USA.
18.
Martinsen
,
K.
, 1993, “
Vectorial Tolerancing for All Types of Surfaces
,”
Advances in Design Automation
,
ASME
, New York, Vol.
2
, pp.
187
198
.
19.
Lawless
,
J. F.
,
Mackay
,
R. J.
, and
Robinson
,
J. A.
, 1999, “
Analysis of Variation Transmission in Manufacturing Processes—Part I
,”
J. Quality Technol.
0022-4065,
31
(
2
), pp.
131
142
.
20.
Jin
,
J.
, and
Shi
,
J.
, 1999, “
State Space Modeling of Sheet Metal Assembly for Dimensional Control
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
121
(
4
), pp.
756
762
.
21.
Ding
,
Y.
,
Ceglarek
,
D.
, and
Shi
,
J.
, 2000, “
Modeling and Diagnosis of Multi-Station Manufacturing Process: Part I—State Space Model
,”
Proc. of Japan-USA Symposium of Flexible Automation
, July 23–26, Ann Arbor, MI, Paper No. JUSFA-13146.
22.
Camelio
,
J.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
, 2003, “
Modeling Variation Propagation of Multi-Station Assembly Systems With Compliant Parts
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
673
681
.
23.
Zhong
,
W.
, 2002, “
Modeling and Optimization of Quality and Productivity for Machining Systems With Different Configurations
,” Doctoral dissertation, University of Michigan, Ann Arbor, MI.
24.
Huang
,
Q.
, and
Shi
,
J.
, 2004, “
Stream of Variation Modeling and Analysis of Serial-Parallel Multistage Manufacturing Systems
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
4
), pp.
611
618
.
25.
Beauregard
,
M. R.
,
Mikulak
,
R. J.
, and
Olson
,
B. A.
, 1993,
A Practical Guide to Statistical Quality Improvement
,
Van Nostrand Reinhold
, New York.
26.
Tech Soft America, 2004, “
Hoops 3D Product Suite
,” http://www.hoops3d.comhttp://www.hoops3d.com
27.
Shakarji
,
C. M.
, 1998, “
Least-Squares Fitting Algorithms of the NIST Algorithms Testing System
,”
J. Res. Natl. Inst. Stand. Technol.
1044-677X,
103
(
6
), pp.
633
641
.
28.
Huang
,
Z.
, and
Yip-Hoi
,
D.
, 2002, “
High-Level Feature Recognition Using Feature Relationship Graphs
,”
Comput.-Aided Des.
0010-4485,
34
, pp.
561
582
.
You do not currently have access to this content.