In nanoscale ductile mode cutting of the monocrystalline silicon wafer, micro-, or nanogrooves on the diamond cutting tool flank face are often observed, which is beyond the understanding based on conventional cutting processes because the silicon workpiece material is monocrystalline and the hardness is lower than that of the diamond cutting tool at room temperature. In this study, the mechanism of the groove wear in nanoscale ductile mode cutting of monocrystalline silicon by diamond is investigated by molecular dynamics simulation of the cutting process. The results show that the temperature rise in the chip formation zone could soften the material at the flank face of the diamond cutting tool. Also, the high hydrostatic pressure in the chip formation region could result in the workpiece material phase transformation from monocrystalline to amorphous, in which the material interatomic bond length varies, yielding atom groups of much shorter bond lengths. Such atom groups could be many times harder than that of the original monocrystalline silicon and could act as “dynamic hard particles” in the material. Having the dynamic hard particles ploughing on the softened flank face of the diamond tool, the micro-/nanogrooves could be formed, yielding the micro-/nanogroove wear as observed.

1.
Blake
,
P. N.
, and
Scattergood
,
R. O.
, 1990, “
Ductile-Regime Machining of Germanium and Silicon
,”
J. Am. Ceram. Soc.
0002-7820,
73
(
4
), pp.
949
957
.
2.
Puttick
,
K. E.
,
Whitmore
,
L. C.
,
Zhdan
,
P.
,
Gee
,
A. E.
, and
Chao
,
C. L.
, 1995, “
Energy Scaling Transitions in Machining of Silicon by Diamond
,”
Tribol. Int.
0301-679X,
28
(
6
), pp.
349
355
.
3.
Fang
,
F. Z.
, and
Venkatesh
,
V. C.
, 1998, “
Diamond Cutting of Silicon With Nanometric Finish
,”
CIRP Ann.
0007-8506,
47
(
1
), pp.
45
49
.
4.
Leung
,
T. P.
,
Lee
,
W. B.
, and
Lu
,
X. M.
, 1998, “
Diamond Turning of Silicon Substrates in Ductile-Regime
,”
J. Mater. Process. Technol.
0924-0136,
73
, pp.
42
48
.
5.
Yan
,
J.
,
Yoshino
,
M.
,
Kuriyagawa
,
T.
,
Shirakashi
,
T.
,
Syoji
,
K.
, and
Komanduri
,
R.
, 2001, “
On the Ductile Machining of Silicon for Micro Electro-Mechanical Systems (MEMS), Opto-Electronic and Optical Applications
,”
Mater. Sci. Eng., A
0921-5093,
297
(
1/2
), pp.
230
234
.
6.
Liu
,
K.
, and
Li
,
X. P.
, 2001, “
Modeling of Ductile Cutting of Tungsten Carbide
,”
Trans. NAMRI/SME
1047-3025,
XXIX
, pp.
251
258
.
7.
Keen
,
D.
, 1971, “
Some Observations on the Wear of Diamond Tools Used in Piston Machining
,”
Wear
0043-1648,
17
, pp.
195
208
.
8.
Wada
,
R.
,
Kodama
,
H.
,
Nakamura
,
K.
,
Mizutani
,
Y.
,
Shimura
,
Y.
, and
Takenaka
,
N.
, 1980, “
Wear Characteristics of Single Crystal Diamond Tool
,”
CIRP Ann.
0007-8506,
29
(
1
), pp.
47
52
.
9.
Glardon
,
R. E.
, and
Finne
,
I.
, 1981, “
Some Observations on the Wear of Single Point Diamond Tools Used for Machining Glass
,”
J. Mater. Sci.
0022-2461,
16
, pp.
1776
1784
.
10.
Yan
,
J.
,
Syoji
,
K.
, and
Tamaki
,
J.
, 2003, “
Some Observations on the Wear of Diamond Tools in Ultra-Precision Cutting of Single-Crystal Silicon
,”
Wear
0043-1648,
255
, pp.
1380
1387
.
11.
Li
,
X. P.
,
He
,
T.
, and
Rahman
,
M.
, 2005, “
Tool Wear Characteristics and Their Effects on Nanoscale Ductile Mode
,”
Wear
0043-1648,
259
, pp.
1207
1214
.
12.
Trent
,
E. M.
, 1977,
Metal Cutting
,
Butterworths
,
London
.
13.
Komanduri
,
R.
,
Chandrasekaran
,
N.
, and
Raff
,
L. M.
, 2001, “
Molecular Dynamics Simulation of the Nanometric Cutting of Silicon
,”
Philos. Mag. B
1364-2812,
81
, pp.
1989
2019
.
14.
Shimada
,
S.
,
Inamura
,
T.
, and
Ikawa
,
N.
, 1997, “
Possible Mechanism of Brittle-Ductile Transition in Material Removal in Micromachining of Brittle Materials
,”
International Symposium on Advances in Abrasive Technology
, Australia, July, pp.
29
32
.
15.
Zhang
,
L. C.
, and
Tanaka
,
H.
, 1998, “
Atomic Scale Deformation in Silicon Monocrystals Induced by Two-Body and Three-Body Contact Sliding
,”
Tribol. Int.
0301-679X,
31
, pp.
425
433
.
16.
Zhang
,
L. C.
, and
Tanaka
,
H.
, 1999, “
On the Mechanics and Physics in the Nano-Indentation of Silicon Monocrystals
,”
JSME Int. J., Ser. A
1340-8046,
42
, pp.
546
559
.
17.
Cheng
,
K.
,
Luo
,
X.
,
Ward
,
R.
, and
Holt
,
R.
, 2003, “
Modeling and Simulation of the Tool Wear in Nanometric Cutting
,”
Wear
0043-1648,
255
, pp.
1427
1432
.
18.
Maekawa
,
K.
, and
Itoh
,
A.
, 1995, “
Friction and Tool Wear in Nano-Scale Machining-A Molecular Dynamics Approach
,”
Wear
0043-1648,
188
, pp.
115
122
.
19.
Allen
,
M. P.
, and
Tildesley
,
D. J.
, 1986,
Computer Simulation of Liquid
,
Clarendon Press
,
Oxford
, p.
25
.
20.
Tersoff
,
J.
, 1989, “
Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems
,”
Phys. Rev. B
0163-1829,
39
, pp.
5566
5568
.
21.
Cheong
,
W. C. D.
, and
Zhang
,
L. C.
, 2000, “
Molecular Dynamics Simulation of Phase Transformation in Silicon Monocrystals Due to Nano-Indentation
,”
Nanotechnology
0957-4484,
11
, pp.
173
180
.
22.
Haile
,
J. M.
, 1992,
Molecular Dynamics Simulation: Elementary Methods
,
Wiley
,
New York
, p.
292
.
23.
Fabrizio
,
C.
, 2001, “
Representation of Mechanical Loads in Molecular Dynamics Simulation
,”
Phys. Rev. B
0163-1829,
65
, p.
014107
.
24.
Cai
,
M. B.
,
Li
,
X. P.
, and
Rahman
,
M.
, 2005, “
Molecular Dynamics Simulation of the Effect of Tool Edge Radius on Cutting Forces and Cutting Region in Nanoscale Ductile Cutting of Silicon
,”
Int. J. Manuf. Technol. Management.
,
7
(
5/6
), pp.
455
466
.
25.
Bakon
,
A.
, and
Szymanski
,
A.
, 1992,
Practical Uses of Diamond
,
Ellis Horwood
,
New York
, p.
30
.
26.
Field
,
J. E.
, 1979,
The Properties of Diamond
,
Academic Press
,
London
, p.
400
.
27.
Needs
,
J.
, and
Mujica
,
A.
, 1995, “
First-Principles Pseudopotential Study of the Structural Phase of Silicon
,”
Phys. Rev. B
0163-1829,
51
(
15
), pp.
9652
9660
.
28.
Gao
,
F.
,
He
,
J.
,
Wu
,
E.
,
Liu
,
S.
,
Yu
,
D.
,
Liu
,
D.
,
Zhang
,
S.
, and
Tian
,
Y.
, 2003, “
Hardness of Covalent Crystals
,”
Phys. Rev. Lett.
0031-9007,
91
, p.
015502
.
29.
Gilman
,
J. J.
, 1975, “
Flow of Covalent Solids at Low Temperature
,”
J. Appl. Phys.
0021-8979,
46
(
12
), pp.
5110
5113
.
You do not currently have access to this content.