A material softening model based on thermal activation energy has been successfully established through tempering experiments in the first part of this study. To apply the model to predicting material softening in hard turned surfaces, the thermal history of work material is needed. In this part, a three-dimensional finite element (FE) model of machining hardened 52100 steel is constructed, and coupled thermal-stress analysis is performed to obtain the material thermal history. Then the material softening model uses the computed thermal history as input to predict the material hardness profiles along the depth into the machined surfaces. Overall, the prediction precisely catches the trend of hardness change along depth and agrees reasonably well with the hardness measurement. What’s more, the sensitivity of material softening to cutting parameters is investigated both quantitatively and qualitatively. Within the investigation range, it is observed that the increase of tool flank wear and feed rate produces severe material softening and a deeper softened layer, while the increase of cutting speed causes significant softening to the surface material but hardly changes the softened depth.

1.
Hibbit, Karlson, and Sorenson, Inc.
, 2002,
ABAQUS/Explicit User’s Manual
, V6.3, Providence, RI.
2.
Taylor
,
F. W.
, 1907, “
On the Art of Cutting Metals
,”
Trans. ASME
0097-6822,
28
, p.
31
.
3.
Hahn
,
R. S.
, 1951, in
Proceedings of the U.S. National Congress of Applied Mechanics
, ASME, p.
661
.
4.
Trigger
,
K. J.
, and
Chao
,
B. T.
, 1951, “
An Analytical Evaluation of Metal Cutting Temperatures
,”
Trans. ASME
0097-6822,
73
, pp.
57
68
.
5.
Moufki
,
A.
,
Molinari
,
A.
, and
Dudzinski
,
D.
, 1998, “
Modeling of Orthogonal Cutting with a Temperature Dependent Friction Law
,”
J. Mech. Phys. Solids
0022-5096,
46
(
10
), pp.
2103
2138
.
6.
Boothroyd
,
G.
, 1966,
Fundamentals of Metal Cutting and Machine Tools
,
Hemiphere
, Washington, DC.
7.
Lipman
,
M. P.
,
Nevis
,
B. E.
, and
Kane
,
G. E.
, 1967, “
A Remote Sensor Method for Determining Average Tool-Chip Interface Temperatures in Metal Cutting
,”
ASME J. Eng. Ind.
0022-0817,
89
, p.
333
.
8.
Nakayama
,
K.
, 1956, “
Temperature Rise of Workpiece During Metal Cutting
,”
Bull. Fac. Eng. Yokohama Nat. Univ.
,
5
, p.
1
.
9.
Konig
,
W.
,
Berktold
,
A.
, and
Koch
,
K. F.
, 1993, “
Turning Versus Grinding—A Comparison of Surface Integrity Aspects and Attainable Accuracies
,”
CIRP Ann.
0007-8506,
42
(
1
), pp.
39
43
.
10.
Wang
,
J. Y.
, and
Liu
,
C. R.
, 1999, “
The Effect of Tool Flank Wear on the Heat Transfer Thermal Damage and Cutting Mechanics in Finish Hard Turning
,”
CIRP Ann.
0007-8506,
48
(
1
), pp.
53
58
.
11.
Loewen
,
E. G.
, and
Shaw
,
M. C.
, 1954, “
On the Analysis of Cutting Tool Temperatures
,”
Trans. ASME
0097-6822,
76
, pp.
217
236
.
12.
Hou
,
Z. B
, and
Komanduri
,
R.
, 1997, “
Modeling of Thermomechanical Shear Instability in Machining
,”
Int. J. Mech. Sci.
0020-7403,
39
(
11
), pp.
1273
1314
.
13.
Chou
,
Y. K.
, and
Evans
,
C. J.
, 1999, “
White Layers and Thermal Modeling of Hard Turned Surfaces
,”
Int. J. Mach. Tools Manuf.
0890-6955,
39
(
12
), pp.
1863
1881
.
14.
Rapier
,
A. C.
, 1954,
Br. J. Appl. Phys.
0508-3443,
5
, pp.
400
405
.
15.
Dutt
,
R. P.
, and
Brewer
,
R. C.
, 1964, “
On the Teoretical Determination of the Temperature Field in Orthogonal Cutting
,”
Int. J. Prod. Res.
0020-7543,
4
(
2
), pp.
91
.
16.
Usui
,
E.
, and
Shirakashi
,
T.
, 1975, “
Experimental Measurement of Temperature Distribution in Tool/Chip Interface
,”
Bull. Jpn. Soc. Precis. Eng.
0582-4206,
9
(
3
), pp.
83
84
.
17.
Smith
,
A. J. R.
, and
Armarego
,
E. J. A
, 1981, “
Temperature Prediction in Orthogonal Cutting with a Finite Difference Approach
,”
CIRP Ann.
0007-8506,
30
(
1
), pp.
9
13
.
18.
Lin
,
Z. C.
, and
Pan
,
W. C.
, 1993, “
A Thermoelastic-Plastic Large Deformation Model for Orthogonal Cutting with Tool Flank Wear-Part I: Computational Procedures
,”
Int. J. Mech. Sci.
0020-7403,
35
(
10
), pp.
829
840
.
19.
Lin
,
Z. C.
, and
Pan
,
W. C.
, 1993, “
A Thermoelastic-Plastic Large Deformation Model for Orthogonal Cutting with Tool Flank Wear-Part II: Machining Application
,”
Int. J. Mech. Sci.
0020-7403,
35
(
10
), pp.
841
850
.
20.
Lei
,
L.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
, 1999, “
Thermo-Mechanical Modeling of Orthogonal Machining Process by Finite Element Analysis
,”
Int. J. Mach. Tools Manuf.
0890-6955,
39
, pp.
731
750
.
21.
Maekawa
,
K.
, and
Ohhata
,
H.
, 1997, “
Simulation Analysis of Three-Dimensional Continuous Chip Formation Processes (Part 3)
,”
Int. J. Jpn. Soc. Precis. Eng.
0916-782X,
31
(
2
), pp.
103
108
.
22.
Shi
,
J.
, and
Liu
,
C. R.
, 2003, “
The Influence of Material Models on Finite Element Simulation of Machining
,”
Journal of Manufacturing Science and Engineering
(in press).
23.
Ng
,
E.-G.
, and
Aspinwell
,
D. K.
, 1999, “
Modeling of Temperature and Forces When Orthogonally Machining Hardened Steel
,”
Int. J. Mach. Tools Manuf.
0890-6955,
39
, pp.
885
903
.
24.
Guo
,
Y. B.
, and
Liu
,
C. R.
, 2002, “
3-D FEA Modeling of Superfinish Hard Turning
,”
J. Manuf. Sci. Eng.
1087-1357,
124
(
2
), pp.
189
199
.
25.
Ueda
,
T.
, et al.
, 1999, “
Temperature Measurement of CBN Tool in Turning of High Hardness Steel
,”
CIRP Ann.
0007-8506,
48
(
1
), pp.
63
66
.
26.
Shi
,
J.
, and
Liu
,
C. R.
, 2003, “
Prediction of Chip Morphology and White Layer in Hard Machining by Finite Element Analysis
,”
International Journal of Advanced Manufacturing Technology
(in press).
27.
Maekawa
,
K.
,
Ohshima
,
I.
,
Kubo
,
K.
, and
Kitagawa
,
T.
, 1994, “
The Effect of Cutting Speed and Feed on Chip Flow and Tool Wear in the Machining of a Titanium Alloy
,” in
Proceedings of the International Conference on Behavior of Materials in Machining
, Warwick, pp.
152
167
.
28.
Ozel
,
T.
, and
Altan
,
T.
, 2000, “
Process Simulation Using Finite Element Method—Prediction of Cutting Forces, Tool Stresses and Temperatures in High Speed Flat End Milling
,”
Int. J. Mach. Tools Manuf.
0890-6955,
40
(
5
), pp.
713
738
.
29.
Shatla
,
M.
,
Kerk
,
C.
, and
Altan
,
T.
, 2001, “
Process Modeling in Machining. I Determination of Flow Stress Data
,”
Int. J. Mach. Tools Manuf.
0890-6955,
41
(
10
), pp.
1511
1534
.
30.
Shatla
,
M.
,
Kerk
,
C.
, and
Altan
,
T.
, 2001, “
Process Modeling in Machining. II. Validation and Applications of the Determined Flow Stress Data
,”
Int. J. Mach. Tools Manuf.
0890-6955,
41
(
11
), pp.
1659
1680
.
31.
Stevenson
,
M. G
, and
Oxley
,
P. L. B.
, 1970, “
Experimental Investigation on the Influence of Speed and Scale on the Strain-Rate in a Zone of Intense Plastic Deformation
,”
Proc. Inst. Mech. Eng.
0020-3483,
184
, pp.
561
576
.
32.
Stevenson
,
M. G
, and
Oxley
,
P. L. B.
, 1971, “
An Experimental Investigation of the Influence of Strain Rate and Temperature on the Flow Stress Properties of a Low C Steel Using a Machining Test
,”
Proc. Inst. Mech. Eng.
0020-3483,
185
, pp.
741
754
.
33.
Oxley
,
P. L. B.
, 1989,
Mechanics of Machining
,
Ellis Horwood
, Chicester.
34.
Zener
,
C.
, and
Hollomon
,
J. H.
, 1944, “
Effect of Strain Rate on Plastic Flow of Steel
,”
J. Appl. Phys.
0021-8979,
14
, pp.
22
32
.
35.
MacGregor
,
C. W.
, and
Fisher
,
J. C.
, 1945, “
Tension Tests at Constant True Strain Rates
,”
J. Appl. Mech.
0021-8936,
12
, pp.
217
227
.
36.
Guo
,
Y. B.
, and
Liu
,
C. R.
, 2002, “
Mechanical Properties of Hardened AISI52100 Steel in Hard Machining Processes
,”
J. Manuf. Sci. Eng.
1087-1357,
124
(
1
), pp.
1
9
.
37.
Strenkowski
,
J. S
, and
Carroll
,
J. T.
, 1985, “
A Finite Element Model of Orthogonal Metal Cutting
,”
ASME J. Eng. Ind.
0022-0817,
107
, pp.
349
354
.
38.
Nakayama
,
K.
, 1958, “
Studies on the Mechanism of Metal Cutting
,”
Bull. Fac. Eng. Yokohama Nat. Univ.
,
7
, p.
1
.
39.
Chandrasekar
,
H.
, and
Kapoor
,
D. V.
, 1965, “
Photoelastic Analysis of Tool-Chip Interface Stresses
,”
ASME J. Eng. Ind.
0022-0817,
87
pp.
495
502
.
40.
Kato
,
S.
,
Yamaguchi
,
K.
, and
Yamada
,
M.
, 1972, “
Stress Distribution at the Interface Between Tool and Chip in Machining
,”
ASME J. Eng. Ind.
0022-0817,
94
, pp.
683
689
.
41.
Zhang
,
B.
, and
Bagchi
,
A.
, 1994, “
Finite Element Simulation of Chip Formation and Comparison with Machining Experiment
,”
ASME J. Eng. Ind.
0022-0817,
116
, pp.
289
297
.
42.
Nakayama
,
K.
,
Arai
,
M.
, and
Kanda
,
T.
, 1988, “
Machining Characteristics of Hard Materials
,”
CIRP Ann.
0007-8506,
37
(
1
), pp.
89
92
.
43.
Wang
,
J. Y.
, 1998, “
A New Methodology for Analyzing the Heat Transfer and Thermal Damage Considering Tool Flank Wear in Finish Hard Machining
,” Ph.D. dissertation, Purdue University.
44.
Tonshoff
,
H. K.
,
Wobker
,
H. G.
, and
Brandt
,
D.
, 1995, “
Hard Turning—Influences on the Workpiece Properties
,”
Transactions of NAMRI/SME
,
XXIII
, pp.
215
220
.
45.
Agha
,
S.
, and
Liu
,
C. R.
, 2000, “
On Modeling the Fatigue Performance Based on Residual Stresses Generated by Superfinish Hard Turning
,”
MED Manufacturing Science and Engineering
, ASME, New York.
You do not currently have access to this content.