The blow of a die forging hammer in its nature and quantity is influenced by the behavior of the forging and its deformation status. In forging, the hammer supplies the energy necessary for plastic deformation as well as the force necessary to coin the forging. The main purpose of this paper is to determine, in hammer forging, how the forces are generated and how the hammer energy is transformed into energies (a) useful for deformation and (b) lost in vibration and noise. Theoretical prediction of the forces is possible by considering the energy balance between the kinetic energy of the ram and the energies used for deformation and lost in rebounding of the ram and the acceleration of the anvil. The results given in this paper show that it is possible to predict at least the upper limits of the generated forces for a given size of an anvil hammer.

This content is only available via PDF.
You do not currently have access to this content.