Abstract

Sensing for wearable robots is an ongoing challenge, especially given the recent trend of soft and compliant robots. Recently, a wearable origami exoshell has been designed to sense the user’s torso motion and provide mobility assistance. The materials of the exoshell contribute to a lightweight design with compliant joints, which are ideal characteristics for a wearable device. Common sensors are not ideal for the exoshell as they compromise these design characteristics. Rotary encoders are often rigid metal devices that add considerable weight and compromise the flexibility of the joints. Inertial measurement unit sensors are affected by environments with variable electromagnetic fields and therefore not ideal for wearable applications. Hall effect sensors and gyroscopes are utilized as alternative compatible sensors, which introduce their own set of challenges: noisy measurements and drift due to sensor bias. To mitigate this, we designed the Kinematically Constrained Kalman filter for sensor fusion of gyroscopes and Hall effect sensors, with the goal of estimating the human’s torso and robot joint angles. We augmented the states to consider bias related to the torso angle in order to compensate for drift. The forward kinematics of the robot is incorporated into the Kalman filter as state constraints to address the unobservability of the torso angle and its related bias. The proposed algorithm improved the estimation performance of the torso angle and its bias, compared to the individual sensors and the standard Kalman filter, as demonstrated through bench tests and experiments with a human user.

References

1.
Li
,
D.
,
Yumbla
,
E. Q.
,
Olivas
,
A.
,
Sugar
,
T.
,
Amor
,
H. B.
,
Lee
,
H.
,
Zhang
,
W.
, and
Aukes
,
D. M.
,
2022
, “
Origami-Inspired Wearable Robot for Trunk Support
,”
IEEE/ASME Trans. Mechatron.
, pp.
1
11
.
2.
Yumbla
,
E. Q.
,
Qiao
,
Z.
,
Tao
,
W.
, and
Zhang
,
W.
,
2021
, “
Human Assistance and Augmentation With Wearable Soft Robotics: A Literature Review and Perspectives
,”
Curr. Robot. Rep.
,
2
(
12
), pp.
399
413
.
3.
Tiboni
,
M.
,
Borboni
,
A.
,
Vérité
,
F.
,
Bregoli
,
C.
, and
Amici
,
C.
,
2022
, “
Sensors and Actuation Technologies in Exoskeletons: A Review
,”
Sensors
,
22
(
3
), p.
884
.
4.
Yumbla
,
F.
,
Yumbla
,
W.
,
Yumbla
,
E. Q.
, and
Moon
,
H.
,
2022
, “
Oobsoft Gripper: A Reconfigurable Soft Gripper Using Oobleck for Versatile and Delicate Grasping
,”
Proceedings of the 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft)
,
Edinburgh, UK
,
Apr. 4–8
, pp.
512
517
.
5.
Filippeschi
,
A.
,
Schmitz
,
N.
,
Miezal
,
M.
,
Bleser
,
G.
,
Ruffaldi
,
E.
, and
Stricker
,
D.
,
2017
, “
Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion
,”
Sensors
,
17
(
6
), p.
1257
.
6.
Wittmann
,
F.
,
Lambercy
,
O.
, and
Gassert
,
R.
,
2019
, “
Magnetometer-Based Drift Correction During Rest in Imu Arm Motion Tracking
,”
Sensors
,
19
(
6
), p.
1312
.
7.
Ahmad
,
N.
,
Ghazilla
,
R. A. R.
,
Khairi
,
N. M.
, and
Kasi
,
V.
,
2013
, “
Reviews on Various Inertial Measurement Unit (IMU) Sensor Applications
,”
Int. J. Signal Process. Syst.
,
1
(
2
), pp.
256
262
.
8.
Lee
,
J. K.
, and
Choi
,
M. J.
,
2019
, “
Robust Inertial Measurement Unit-Based Attitude Determination Kalman Filter for Kinematically Constrained Links
,”
Sensors
,
19
(
4
), p.
768
.
9.
Jeon
,
S.
,
Tomizuka
,
M.
, and
Katou
,
T.
,
2009
, “
Kinematic Kalman Filter (KKF) for Robot end-Effector Sensing
,”
ASME J. Dyn. Syst. Meas. Control.
,
131
(
2
), p.
021010
.
10.
Xu
,
C.
,
He
,
J.
,
Zhang
,
X.
,
Yao
,
C.
, and
Tseng
,
P.-H.
,
2018
, “
Geometrical Kinematic Modeling on Human Motion Using Method of Multi-Sensor Fusion
,”
Inf. Fusion
,
41
(
1
), pp.
243
254
.
11.
Ponraj
,
G.
, and
Ren
,
H.
,
2018
, “
Sensor Fusion of Leap Motion Controller and Flex Sensors Using Kalman Filter for Human Finger Tracking
,”
IEEE Sens. J.
,
18
(
3
), pp.
2042
2049
.
12.
Alouani
,
A.
,
Blair
,
W.
, and
Watson
,
G.
,
1991
, “
Bias and Observability Analysis of Target Tracking Filters Using a Kinematic Constraint
,”
Proceedings of the Twenty-Third Southeastern Symposium on System Theory
,
Columbia, SC
,
Mar. 10–12
, IEEE Computer Society Press, pp.
229
232
.
13.
Esquenazi
,
A.
,
Talaty
,
M.
,
Packel
,
A.
, and
Saulino
,
M.
,
2012
, “
The Rewalk Powered Exoskeleton to Restore Ambulatory Function to Individuals With Thoracic-Level Motor-Complete Spinal Cord Injury
,”
Am. J. Phys. Med. Rehabil.
,
91
(
11
), pp.
911
921
.
14.
Zoss
,
A.
,
Kazerooni
,
H.
, and
Chu
,
A.
,
2006
, “
Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (Bleex)
,”
IEEE/ASME Trans. Mechatron.
,
11
(
4
), pp.
128
138
.
15.
Tsukahara
,
A.
,
Kawanishi
,
R.
,
Hasegawa
,
Y.
, and
Sankai
,
Y.
,
2010
, “
Sit-to-Stand and Stand-to-Sit Transfer Support for Complete Paraplegic Patients With Robot Suit HAL
,”
Adv. Rob.
,
24
(
1
), pp.
1615
1638
.
16.
Yang
,
X.
,
Huang
,
T.-H.
,
Hu
,
H.
,
Yu
,
S.
,
Zhang
,
S.
,
Zhou
,
X.
,
Carriero
,
A.
,
Yue
,
G.
, and
Su
,
H.
,
2019
, “
Spine- Inspired Continuum Soft Exoskeleton for Stoop Lifting Assistance
,”
IEEE Robot. Autom. Lett.
,
4
(
10
), pp.
4547
4554
.
17.
Song
,
J.
,
Zhu
,
A.
,
Tu
,
Y.
, and
Zou
,
J.
,
2021
, “
Multijoint Passive Elastic Spine Exoskeleton for Stoop Lifting Assistance
,”
Int. J. Adv. Rob. Syst.
,
18
(
6
), p.
172988142110620
.
18.
Roveda
,
L.
,
Savani
,
L.
,
Arlati
,
S.
,
Dinon
,
T.
,
Legnani
,
G.
, and
Molinari Tosatti
,
L.
,
2020
, “
Design Methodology of an Active Back-Support Exoskeleton with Adaptable Backbone-Based Kinematics
,”
Int. J. Ind. Ergon.
,
79
(
1
), p.
102991
.
19.
Southall
,
B.
,
Buxton
,
B. F.
, and
Marchant
,
J. A.
,
1998
, “
Controllability and Observability: Tools for Kalman Filter Design
,”
British Machine Vision Conference
,
Southampton, UK
,
Sept. 14–17
, BMVA Press, pp. 17.1–17.10.
You do not currently have access to this content.