Abstract

The purpose of this study is to analyse how the thickness of Rolled Homogeneous Armor (RHA) and impact velocity of an Explosively Formed Projectile (EFP) influence the middle mass behind-armor debris (BAD) when a variable cross-section EFP penetrates RHA normally. Numerical simulation is adopted, the thickness of RHA varies from 10mm to 70mm, and the impact velocity of the EFP varies from 1650m/s to 1860m/s. The results indicate that: (1) when the impact velocity of the EFP is 1650m/s and the thickness of RHA varies from 10mm to 70mm, p1g of the RHA and EFP decreases with increasing H0. The thin target could be used to produce a large proportion of the middle mass BAD from RHA (including BAD from the EFP and BAD from the RHA and EFP). (2) When the impact velocity of the EFP varies from 1650m/s to 1860m/s and the thickness of the RHA is 40mm, p1g of the RHA is less than 50%, p1g of the EFP is more than 70%, and p1g of the RHA and EFP is more than 50%.

This content is only available via PDF.