Abstract

Driven by the periodical reverse of flow orientation, vortices in oscillatory flow induce a local high-speed and low-pressure flow region near the wall, which brings complex physical phenomena to viscous dissipation and heat transfer. This research focuses on the above-mentioned features by relating Spatio-temporal relationships between fluid dynamics and energy transmission. A two-dimensional oscillation model working in a thermoacoustic resonator is developed, considering heating and cooling processes in bending channels. We address oscillatory vortices' formation and transmission process in the bending channel. The acoustic streaming velocity field is obtained by postprocessing and proved to be the primary mechanism to induce spatial vortices in the vicinity of the entrance. The transferring vortices caused by the bending channel are like mini-pumps occupying fluid regions, which contribute to the local enhanced heat transfer performance and are influenced by the wall boundary conditions. The result also shows that skin friction in bending channels occupies about 10%–30% of total resistance, and the driving ratio is more sensitive to viscous dissipation than the wavy height of the bending channel. This study provides an approach to understanding the underlying mechanisms of heat transfer enhancement from hydrodynamics and inspiration to design compact heat exchangers employed in the oscillating flow.

References

1.
Zhang
,
C. Y.
,
Guo
,
X. F.
,
Brunet
,
P.
,
Costalonga
,
M.
, and
Royon
,
L.
,
2019
, “
Acoustic Streaming Near a Sharp Structure and Its Mixing Performance Characterization
,”
Microfluid. Nanofluid.
,
23
(
9
), p.
104
.10.1007/s10404-019-2271-5
2.
Jaworski
,
A. J.
,
Mao
,
X. A.
,
Mao
,
X. R.
, and
Yu
,
Z.,B.
,
2009
, “
Entrance Effects in the Channels of the Parallel Plate Stack in Oscillatory Flow Conditions
,”
Exp. Therm. Fluid Sci.
,
33
(
3
), pp.
495
502
.10.1016/j.expthermflusci.2008.11.003
3.
Piccolo
,
A.
, and
Jaworski
,
A. J.
,
2020
, “
Experimental Study of Heat Transfer Characteristics of Finned-Tube and Circular-Pore Heat Exchangers in Oscillatory Flow
,”
Appl. Therm. Eng.
,
181
, p.
116022
.10.1016/j.applthermaleng.2020.116022
4.
Kamsanam
,
W.
,
Mao
,
X. A.
, and
Jaworski
,
A. J.
,
2016
, “
Thermal Performance of Finned-Tube Thermoacoustic Heat Exchangers in Oscillatory Flow Conditions
,”
Int. J. Therm. Sci.
,
101
, pp.
169
180
.10.1016/j.ijthermalsci.2015.10.032
5.
Etienne
,
B.
, and
Omar
,
M. K.
,
2001
, “
Numerical Study of Thermoacoustic Heat Exchangers in the Thin Plate Limit
,”
Numer. Heat Transfer, Part A.
,
40
, pp.
445
471
.10.1080/10407780152619784
6.
Piccolo
,
A.
,
2011
, “
Numerical Computation for Parallel Plate Thermoacoustic Heat Exchangers in Standing Wave Oscillatory Flow
,”
Int. J. Heat Mass Transfer
,
54
(
21–22
), pp.
4518
4530
.10.1016/j.ijheatmasstransfer.2011.06.027
7.
Piccolo
,
A.
,
2013
, “
Optimization of Thermoacoustic Refrigerators Using Second Law Analysis
,”
Appl. Energy
,
103
, pp.
358
367
.10.1016/j.apenergy.2012.09.044
8.
Rahman
,
A.
, and
Zhang
,
X. Q.
,
2018
, “
Prediction of Oscillatory Heat Transfer Coefficient for a Thermoacoustic Heat Exchanger Through Artificial Neural Network Technique
,”
Int. J. Heat Mass Transfer
,
124
, pp.
1088
1096
.10.1016/j.ijheatmasstransfer.2018.04.035
9.
Ali
,
S.
,
Menanteau
,
S.
,
Habchi
,
C.
,
Lemenand
,
T.
, and
Harion
,
J.-L.
,
2016
, “
Heat Transfer and Mixing Enhancement by Using Multiple Freely Oscillating Flexible Vortex Generators
,”
Appl. Therm. Eng.
,
105
, pp.
276
289
.10.1016/j.applthermaleng.2016.04.130
10.
Schlichting
,
M.
, and
Gersten
,
K.
,
2017
, “
Boundary-Layer Theory
,”
Onset of Turbulence (Stability Theory)
,
Springer
,
Berlin, Heidelberg, Germany
, pp.
415
496
.
11.
Al
,
Z. S.
,
Islam
,
M. S.
, and
Saha
,
S. C.
,
2020
, “
Heat Transfer Augmentation in Retrofitted Corrugated Plate Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
161
, p.
120226
.10.1016/j.ijheatmasstransfer.2020.120226
12.
Tokgoz
,
N.
,
Tunay
,
T.
, and
Sahin
,
B.
,
2018
, “
Effect of Corrugated Channel Phase Shifts on Flow Structures and Heat Transfer Rate
,”
Exp. Therm. Fluid Sci.
,
99
, pp.
374
391
.10.1016/j.expthermflusci.2018.08.011
13.
Vahedi
,
M.
,
Mollaei Barzi
,
Y.
, and
Firouzi
,
M.
,
2021
, “
Two-Phase Simulation of Nanofluid Flow in a Heat Exchanger With Grooved Wall
,”
J. Therm. Anal. Calorim.
,
146
(
3
), pp.
1297
1321
.10.1007/s10973-020-10066-6
14.
Ribeiro
,
F.
,
de Conde
,
K. E.
,
Garcia
,
E. C.
, and
Nascimento
,
I. P.
,
2020
, “
Heat Transfer Performance Enhancement in Compact Heat Exchangers by the Use of Turbulators in the Inner Side
,”
Appl. Therm. Eng.
,
173
, p.
115188
.10.1016/j.applthermaleng.2020.115188
15.
Shi
,
L.
,
Yu
,
Z. B.
,
Jaworski
,
A. J.
, and
Abduljalil
,
A. S.
,
2009
, “
Vortex Shedding at the End of Parallel-Plate Thermoacoustic Stack in the Oscillatory Flow Conditions
,”
Mechatron. Manuf. Eng.
,
3
, pp.
80
87
.https://publications.waset.org/10616/vortex-shedding-at-the-end-of-parallel-platethermoacoustic-stack-in-the-oscillatory-flow-conditions
16.
Feng
,
X.
,
Liu
,
Z. C.
,
Zheng
,
N. B.
,
Liu
,
P.
, and
Liu
,
W.
,
2018
, “
Numerical Study on Flow Characteristics and Heat Transfer Enhancement of Oscillatory Flow in a Spirally Corrugated Tube
,”
Int. J. Heat Mass Transfer
,
127
, pp.
402
413
.10.1016/j.ijheatmasstransfer.2018.06.139
17.
Wu
,
J. Z.
,
Ma
,
H. Y.
, and
Zhou
,
M. D.
,
2006
, “
Vorticity and Vortex Dynamics
,”
Vorticity Dynamics in Flow Separation
,
Springer
,
Berlin, Heidelberg, Germany
, pp.
234
252
.
18.
Ilori
,
O. M.
,
Jaworski
,
A. J.
,
Mao
,
X. A.
, and
Ismail
,
O. S.
,
2021
, “
Effects of Edge Shapes on Thermal-Fluid Processes in Oscillatory Flows
,”
Therm. Sci. Eng.
,
25
, p.
101004
.10.1016/j.tsep.2021.101004
19.
Shi
,
L.
,
Mao
,
X. A.
, and
Jaworski
,
A. J.
,
2010
, “
Application of Planar Laser-Induced Fluorescence Measurement Techniques to Study the Heat Transfer Characteristics of Parallel-Plate Heat Exchangers in Thermoacoustic Devices
,”
Meas. Sci. Technol.
,
21
(
11
), p.
115405
.10.1088/0957-0233/21/11/115405
20.
Swift
,
G. W.
,
2017
, “
Thermoacoustics II: A Unifying Perspective for Some Engines and Refrigerators
,”
Beyond Rott's Thermoacoustics
,
Springer
,
Berlin, Heidelberg, Germany
, pp.
171
197
.
21.
Zhong
,
G. Y.
,
Chen
,
P. F.
,
Liu
,
F. Z.
, and
Liu
,
Y. W.
,
2022
, “
Numerical Analysis on Heat Transfer Performance of Oscillating Flow in Wavy Channel
,”
Int. J. Therm. Sci.
,
172
, p.
107279
.10.1016/j.ijthermalsci.2021.107279
22.
Zhang
,
C. Y.
,
Guo
,
X. F.
,
Royon
,
L.
, and
Brunet
,
P.
,
2020
, “
Unveiling of the Mechanisms of Acoustic Streaming Induced by Sharp Edges
,”
Phys. Rev. E
,
102
(
4
), p.
043110
.10.1103/PhysRevE.102.043110
23.
Merkli
,
P. E.
, and
Thomann
,
H.
,
1975
, “
Transition to Turbulence in Oscillating Pipe Flow
,”
J. Fluid Mech.
,
68
(
3
), pp.
567
576
.10.1017/S0022112075001826
24.
Mohd Saat
,
F.
, and
Jaworski
,
A. J.
,
2017
, “
Numerical Predictions of Early Stage Turbulence in Oscillatory Flow Across Parallel-Plate Heat Exchangers of a Thermoacoustic System
,”
Appl. Sci.
,
7
(
7
), p.
673
.10.3390/app7070673
25.
Vocale
,
P.
,
Bozzoli
,
F.
,
Rainieri
,
S.
, and
Pagliarini
,
G.
,
2019
, “
Influence of Thermal Boundary Conditions on Local Convective Heat Transfer in Coiled Tubes
,”
Int. J. Therm. Sci.
,
145
, p.
106039
.10.1016/j.ijthermalsci.2019.106039
26.
Shi
,
L.
,
Yu
,
Z. B.
, and
Jaworski
,
A. J.
,
2010
, “
Application of Laser-Based Instrumentation for Measurement of Time-Resolved Temperature and Velocity Fields in the Thermoacoustic System
,”
Int. J. Therm. Sci.
,
49
(
9
), pp.
1688
1701
.10.1016/j.ijthermalsci.2010.03.015
You do not currently have access to this content.