Abstract

Having published some of the most widely cited publications over the last 30 years, Professor Satish G. Kandlikar has been among the most prominent researcher in the field of heat transfer. Throughout these years, he has coauthored over 200 journal paper in various areas of heat transfer. This paper provides a comprehensive look at Professor Kandlikar's research work over the years. The research work has been broadly categorized into (1) flow boiling correlations, (2) fluid flow and heat transfer in microchannels, (3) roughness effect at microscale, (4) pool boiling heat transfer and critical heat flux modeling, (5) surface enhancements for pool boiling, (6) numerical modeling of bubble growth in boiling, (7) water transport in proton exchange membrane (PEM) fuel cells, and (8) infrared imaging to detect breast cancer. The research conducted in each of these areas has produced some landmark findings, some of the most widely used theoretical models and an abundance of high-quality experimental data. The focus of this paper is to collate major finding and highlights some of the common themes that guided the research in Professor Kandlikar's group. This will help the readers gain a broad understanding of each of the areas of study in Professor Kandlikar's group and place the findings of the papers in a larger context.

References

1.
Kandlikar
,
S. G.
,
1990
, “
A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes
,”
ASME J. Heat Transfer-Trans. ASME
,
112
(
1
), pp.
219
228
.10.1115/1.2910348
2.
Kandlikar
,
S. G.
,
1991
, “
A Model for Correlating Flow Boiling Heat Transfer in Augmented Tubes and Compact Evaporators
,”
ASME J. Heat Transfer-Trans. ASME
,
113
(
4
), pp.
966
972
.10.1115/1.2911229
3.
Kandlikar
,
S.
, and
Raykoff
,
T.
,
1997
, “
Predicting Flow Boiling Heat Transfer of Refrigerants in Microfin Tubes
,”
Enhanced Heat Transfer
,
4
(
4
), pp.
257
268
.10.1615/JEnhHeatTransf.v4.i4.20
4.
Kandlikar
,
S. G.
,
1998
, “
Boiling Heat Transfer With Binary Mixtures: Part II—Flow Boiling in Plain Tubes
,”
ASME J. Heat Transfer-Trans. ASME
,
120
(
2
), pp.
388
394
.10.1115/1.2824262
5.
Kandlikar
,
S. G.
,
1997
, “
Boiling Heat Transfer With Binary Mixtures Part I-a Theoretical Model for Pool Boiling
,”
ASME-Publ.-HTD
,
342
, pp.
19
26
.10.1115/1.2824260
6.
Chauhan
,
A.
, and
Kandlikar
,
S. G.
,
2020
, “
Transforming Pool Boiling Into Self-Sustained Flow Boiling Through Bubble Squeezing Mechanism in Tapered Microgaps
,”
Appl. Phys. Lett.
,
116
(
8
), p.
081601
.10.1063/1.5141357
7.
Kandlikar
,
S. G.
,
1991
, “
Development of a Flow Boiling Map for Subcooled and Saturated Flow Boiling of Different Fluids Inside Circular Tubes
,”
ASME J. Heat Transfer-Trans. ASME
,
113
(
1
), pp.
190
200
.10.1115/1.2910524
8.
Kandlikar
,
S. G.
,
1998
, “
Heat Transfer Characteristics in Partial Boiling, Fully Developed Boiling, and Significant Void Flow Regions of Subcooled Flow Boiling
,”
ASME J. Heat Transfer-Trans. ASME
,
120
(
2
), pp.
395
401
.10.1115/1.2824263
9.
Kandlikar
,
S.
,
1992
, “
Bubble Behavior and Departure Bubble Diameter of Bubbles Generated Over Nucleating Cavities in Flow Boiling
,”
Engineering Foundation Conference
, Pool and External Flow Boiling,
V. K.
Dhir
and
A. E.
Bergles
, eds., Santa Barbara, CA, Mar. 22–27.
10.
Kandlikar
,
S. G.
, and
Stumm
,
B.
,
1995
, “
A Control Volume Approach for Investigating Forces on a Departing Bubble Under Subcooled Flow Boiling
,”
ASME-Publ.-Htd 273
,
117
(
4
), pp.
990
997
.10.1115/1.2836321
11.
Kandlikar
,
S. G.
,
2002
, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
389
407
.10.1016/S0894-1777(02)00150-4
12.
Kandlikar
,
S. G.
,
2003
, “
Microchannels–Short History and Bright Future
,”
Heat Transfer Eng.
,
24
(
1
), pp.
1
2
.10.1080/01457630304045
13.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
,
2003
, “
Evolution of Microchannel Flow Passages–Thermohydraulic Performance and Fabrication Technology
,”
Heat Transfer Eng.
,
24
(
1
), pp.
3
17
.10.1080/01457630304040
14.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
Control and Effect of Dissolved Air in Water During Flow Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
,
47
(
8–9
), pp.
1925
1935
.10.1016/j.ijheatmasstransfer.2003.09.031
15.
Kandlikar
,
S. G.
,
2012
, “
Closure to ‘Discussion of “Heat Transfer Mechanisms During Flow Boiling in Microchannels’ (2012, ASME J. Heat Transfer, 134, p. 015501)
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
1
), p.
015502
.10.1115/1.4004771
16.
Kandlikar
,
S. G.
, and
Balasubramanian
,
P.
,
2004
, “
An Extension of the Flow Boiling Correlation to Transition, Laminar, and Deep Laminar Flows in Minichannels and Microchannels
,”
Heat Transfer Eng.
,
25
(
3
), pp.
86
93
.10.1080/01457630490280425
17.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
An Experimental Investigation of Flow Boiling Characteristics of Water in Parallel Microchannels
,”
ASME J. Heat Transfer-Trans. ASME
,
126
(
4
), pp.
518
526
.10.1115/1.1778187
18.
Kandlikar
,
S. G.
,
2010
, “
Similarities and Differences Between Flow Boiling in Microchannels and Pool Boiling
,”
Heat Transfer Eng.
,
31
(
3
), pp.
159
167
.10.1080/01457630903304335
19.
Balasubramanian
,
P.
, and
Kandlikar
,
S. G.
,
2005
, “
Experimental Study of Flow Patterns, Pressure Drop, and Flow Instabilities in Parallel Rectangular Minichannels
,”
Heat Transfer Eng.
,
26
(
3
), pp.
20
27
.10.1080/01457630590907167
20.
Kandlikar
,
S. G.
, and
Balasubramanian
,
P.
,
2005
, “
An Experimental Study on the Effect of Gravitational Orientation on Flow Boiling of Water in 1054 × 197 μm Parallel Minichannels
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
8
), pp.
820
829
.10.1115/1.1928911
21.
English
,
N. J.
, and
Kandlikar
,
S. G.
,
2006
, “
An Experimental Investigation Into the Effect of Surfactants on Air-Water Two-Phase Flow in Minichannels
,”
Heat Transfer Eng.
,
27
(
4
), pp.
99
109
.10.1080/01457630500523980
22.
Perry
,
J. L.
, and
Kandlikar
,
S. G.
,
2008
, “
Fouling and Its Mitigation in Silicon Microchannels Used for IC Chip Cooling
,”
Microfluid Nanofluid
,
5
(
3
), pp.
357
371
.10.1007/s10404-007-0254-4
23.
Kandlikar
,
S. G.
,
2006
, “
Effect of Liquid-Vapor Phase Distribution on the Heat Transfer Mechanisms During Flow Boiling in Minichannels and Microchannels
,”
Heat Transfer Eng.
,
27
(
1
), pp.
4
13
.10.1080/01457630500341607
24.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
,
Willistein
,
D. A.
, and
Borrelli
,
J.
,
2006
, “
Stabilization of Flow Boiling in Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
4
), pp.
389
396
.10.1115/1.2165208
25.
Kuan
,
W. K.
, and
Kandlikar
,
S. G.
,
2007
, “
Experimental Study on the Effect of Stabilization on Flow Boiling Heat Transfer in Microchannels
,”
Heat Transfer Eng.
,
28
(
8–9
), pp.
746
752
.10.1080/01457630701328304
26.
Kandlikar
,
S. G.
,
2006
, “
Nucleation Characteristics and Stability Considerations During Flow Boiling in Microchannels
,”
Exp. Therm. Fluid Sci.
,
30
(
5
), pp.
441
447
.10.1016/j.expthermflusci.2005.10.001
27.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2006
, “
Single-Phase Liquid Friction Factors in Microchannels
,”
Int. J. Therm. Sci.
,
45
(
11
), pp.
1073
1083
.10.1016/j.ijthermalsci.2006.01.016
28.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
Review of Single-Phase Heat Transfer Enhancement Techniques for Application in Microchannels, Minichannels and Microdevices
,”
Int. J. Heat Technol.
,
22
(
2
), pp.
3
11
.https://www.researchgate.net/publication/279908821_Review_of_singlephase_heat_transfer_enhancement_techniques_for_application_in_microchannels_minichannels_and_microdevices
29.
Steinke
,
M. E.
,
Kandlikar
,
S. G.
,
Magerlein
,
J. H.
,
Colgan
,
E. G.
, and
Raisanen
,
A. D.
,
2006
, “
Development of an Experimental Facility for Investigating Single-Phase Liquid Flow in Microchannels
,”
Heat Transfer Eng.
,
27
(
4
), pp.
41
52
.10.1080/01457630500523774
30.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
,
2004
, “
Evaluation of Single Phase Flow in Microchannels for High Heat Flux Chip Cooling—Thermohydraulic Performance Enhancement and Fabrication Technology
,”
Heat Transfer Eng.
,
25
(
8
), pp.
5
16
.10.1080/01457630490519772
31.
Kandlikar
,
S. G.
,
Widger
,
T.
,
Kalani
,
A.
, and
Mejia
,
V.
,
2013
, “
Enhanced Flow Boiling Over Open Microchannels With Uniform and Tapered Gap Manifolds
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
6
), p.
061401
.10.1115/1.4023574
32.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2014
, “
Evaluation of Pressure Drop Performance During Enhanced Flow Boiling in Open Microchannels With Tapered Manifolds
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
5
), p.
051502
.10.1115/1.4026306
33.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2015
, “
Effect of Taper on Pressure Recovery During Flow Boiling in Open Microchannels With Manifold Using Homogeneous Flow Model
,”
Int. J. Heat Mass Transfer
,
83
, pp.
109
117
.10.1016/j.ijheatmasstransfer.2014.11.080
34.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2015
, “
Combining Liquid Inertia With Pressure Recovery From Bubble Expansion for Enhanced Flow Boiling
,”
Appl. Phys. Lett.
,
107
(
18
), p.
181601
.10.1063/1.4935211
35.
Chauhan
,
A.
, and
Kandlikar
,
S. G.
,
2019
, “
Characterization of a Dual Taper Thermosiphon Loop for CPU Cooling in Data Centers
,”
Appl. Therm. Eng.
,
146
, pp.
450
458
.10.1016/j.applthermaleng.2018.10.010
36.
Rubio-Jimenez
,
C. A.
,
Kandlikar
,
S. G.
, and
Hernandez-Guerrero
,
A.
,
2012
, “
Numerical Analysis of Novel Micro Pin Fin Heat Sink With Variable Fin Density
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
2
(
5
), pp.
825
833
.10.1109/TCPMT.2012.2189925
37.
Koz
,
M.
, and
Kandlikar
,
S. G.
,
2013
, “
Numerical Investigation of Interfacial Transport Resistance Due to Water Droplets in Proton Exchange Membrane Fuel Cell Air Channels
,”
J. Power Sources
,
243
, pp.
946
957
.10.1016/j.jpowsour.2013.06.075
38.
Lorenzini-Gutierrez
,
D.
, and
Kandlikar
,
S. G.
,
2014
, “
Variable Fin Density Flow Channels for Effective Cooling and Mitigation of Temperature Nonuniformity in Three-Dimensional Integrated Circuits
,”
ASME J. Electron. Packag.
,
136
(
2
), p.
021007
.10.1115/1.4027091
39.
Gonzalez-Hernandez
,
J.-L.
,
Kandlikar
,
S. G.
, and
Hernandez-Guerrero
,
A.
,
2016
, “
Performance Assessment Comparison of Variable Fin Density Microchannels With Offset Configurations
,”
Heat Transfer Eng.
,
37
(
16
), pp.
1369
1381
.10.1080/01457632.2015.1136146
40.
Shamim
,
M. S.
,
Narde
,
R. S.
,
Gonzalez-Hernandez
,
J.-L.
,
Ganguly
,
A.
,
Venkatarman
,
J.
, and
Kandlikar
,
S. G.
,
2019
, “
Evaluation of Wireless Network-On-Chip Architectures With Microchannel-Based Cooling in 3D Multicore Chips
,”
Sustainable Comput. Inf. Syst.
,
21
, pp.
165
178
.10.1016/j.suscom.2019.01.008
41.
Kandlikar
,
S. G.
,
2010
, “
Microchannels: Rapid Growth of a Nascent Technology
,”
ASME J. Heat Transfer-Trans. ASME
,
132
(
4
), p. 040301. 10.1115/1.4000889
42.
Kandlikar
,
S.
,
2001
, “
Critical Heat Flux in Subcooled Flow Boiling—An Assessment of Current Understanding and Future Directions for Research
,”
Multiphase Sci. Technol.
,
13
(
3–4
), p.
26
.10.1615/MultScienTechn.v13.i3-4.40
43.
Perry
,
J.
, and
Kandlikar
,
S.
,
2006
, “
Review and Fabrication of Nanochannels for Single Phase Liquid Flow
,”
Microfluid. Nanofluid.
,
2
(
3
), pp.
185
193
.10.1007/s10404-005-0068-1
44.
Kandlikar
,
S.
,
2005
, “
High Flux Heat Removal With Microchannels–A Roadmap of Challenges and Opportunities
,”
Heat Transfer Eng.
,
26
(
8
), pp.
5
14
.10.1080/01457630591003655
45.
Kandlikar
,
S.
,
2007
, “
A Roadmap for Implementing Minichannels in Refrigeration and Air-Conditioning Systems—Current Status and Future Directions
,”
Heat Transfer Eng.
,
28
(
12
), pp.
973
985
.10.1080/01457630701483497
46.
Kandlikar
,
S. G.
,
Colin
,
S.
,
Peles
,
Y.
,
Garimella
,
S.
,
Pease
,
R. F.
,
Brandner
,
J. J.
, and
Tuckerman
,
D. B.
,
2013
, “
Heat Transfer in Microchannels—2012 Status and Research Needs
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
9
), p.
091001
.10.1115/1.4024354
47.
Kandlikar
,
S. G.
,
Joshi
,
S.
, and
Tian
,
S.
,
2003
, “
Effect of Surface Roughness on Heat Transfer and Fluid Flow Characteristics at Low Reynolds Numbers in Small Diameter Tubes
,”
Heat Transfer Eng.
,
24
(
3
), pp.
4
16
.10.1080/01457630304069
48.
Kandlikar
,
S. G.
,
2005
, “
Roughness Effects at Microscale - Reassessing Nikuradse's Experiments on Liquid Flow in Rough Tubes
,”
Bull. Pol. Acad. Sci.
,
53
(
4
), pp.
343
349
.http://bulletin.pan.pl/(53-4)343.pdf
49.
Kandlikar
,
S. G.
,
Schmitt
,
D.
,
Carrano
,
A. L.
, and
Taylor
,
J. B.
,
2005
, “
Characterization of Surface Roughness Effects on Pressure Drop in Single-Phase Flow in Minichannels
,”
Phys. Fluids
,
17
(
10
), p.
100606
.10.1063/1.1896985
50.
Rawool
,
A.
,
Mitra
,
S.
, and
Kandlikar
,
S.
,
2006
, “
Numerical Simulation of Flow Through Microchannels With Designed Roughness
,”
Microfluid. Nanofluid.
,
2
(
3
), pp.
215
221
.10.1007/s10404-005-0064-5
51.
Taylor
,
J. B.
,
Carrano
,
A. L.
, and
Kandlikar
,
S. G.
,
2006
, “
Characterization of the Effect of Surface Roughness and Texture on Fluid Flow—Past, Present, and Future
,”
Int. J. Therm. Sci.
,
45
(
10
), pp.
962
968
.10.1016/j.ijthermalsci.2006.01.004
52.
Brackbill
,
T. P.
, and
Kandlikar
,
S. G.
,
2007
, “
Effect of Sawtooth Roughness on Pressure Drop and Turbulent Transition in Microchannels
,”
Heat Transfer Eng.
,
28
(
8–9
), pp.
662
669
.10.1080/01457630701326290
53.
Kandlikar
,
S.
,
2008
, “
Exploring Roughness Effect on Laminar Internal Flow-Are We Ready for Change?
,”
Nanoscale Microscale Thermophys. Eng.
,
12
(
1
), pp.
61
82
.10.1080/15567260701866728
54.
Young
,
P. L.
,
Brackbill
,
T. P.
, and
Kandlikar
,
S. G.
,
2009
, “
Comparison of Roughness Parameters for Various Microchannel Surfaces in Single-Phase Flow Applications
,”
Heat Transfer Eng.
,
30
(
1–2
), pp.
78
90
.10.1080/01457630802293464
55.
Brackbill
,
T. P.
, and
Kandlikar
,
S. G.
,
2010
, “
Application of Lubrication Theory and Study of Roughness Pitch During Laminar, Transition, and Low Reynolds Number Turbulent Flow at Microscale
,”
Heat Transfer Eng.
,
31
(
8
), pp.
635
645
.10.1080/01457630903466621
56.
Wagner
,
R. N.
, and
Kandlikar
,
S. G.
,
2012
, “
Effects of Structured Roughness on Fluid Flow at the Microscale Level
,”
Heat Transfer Eng.
,
33
(
6
), pp.
483
493
.10.1080/01457632.2012.624850
57.
Dharaiya
,
V. V.
, and
Kandlikar
,
S. G.
,
2013
, “
A Numerical Study on the Effects of 2D Structured Sinusoidal Elements on Fluid Flow and Heat Transfer at Microscale
,”
Int. J. Heat Mass Transfer
,
57
(
1
), pp.
190
201
.10.1016/j.ijheatmasstransfer.2012.10.004
58.
Lin
,
T.-Y.
, and
Kandlikar
,
S. G.
,
2012
, “
A Theoretical Model for Axial Heat Conduction Effects During Single-Phase Flow in Microchannels
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
2
), p.
020902
.10.1115/1.4004936
59.
Lin
,
T.-Y.
, and
Kandlikar
,
S. G.
,
2012
, “
An Experimental Investigation of Structured Roughness Effect on Heat Transfer During Single-Phase Liquid Flow at Microscale
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
10
), p.
101701
.10.1115/1.4006844
60.
Yang
,
C.-Y.
,
Chen
,
C.-W.
,
Lin
,
T.-Y.
, and
Kandlikar
,
S. G.
,
2012
, “
Heat Transfer and Friction Characteristics of Air Flow in Microtubes
,”
Exp. Therm. Fluid Sci.
,
37
, pp.
12
18
.10.1016/j.expthermflusci.2011.09.003
61.
Lin
,
T.-Y.
, and
Kandlikar
,
S. G.
,
2013
, “
Heat Transfer Investigation of Air Flow in Microtubes—Part I: Effects of Heat Loss, Viscous Heating, and Axial Conduction
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
3
), p.
031703
.10.1115/1.4007876
62.
Lin
,
T.-Y.
, and
Kandlikar
,
S. G.
,
2013
, “
Heat Transfer Investigation of Air Flow in Microtubes—Part II: Scale and Axial Conduction Effects
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
3
), p.
031704
.10.1115/1.4007877
63.
Lin
,
T.-Y.
,
Chen
,
C.-W.
,
Yang
,
C.-Y.
, and
Kandlikar
,
S. G.
,
2014
, “
An Experimental Investigation on Friction Characteristics and Heat Transfer of Air and CO 2 Flow in Microtubes With Structured Surface Roughness
,”
Heat Transfer Eng.
,
35
(
2
), pp.
150
158
.10.1080/01457632.2013.812485
64.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer-Trans. ASME
,
123
(
6
), pp.
1071
1079
.10.1115/1.1409265
65.
Kandlikar
,
S.
, and
Steinke
,
M.
,
2002
, “
Contact Angles and Interface Behavior During Rapid Evaporation of Liquid on a Heated Surface
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3771
3780
.10.1016/S0017-9310(02)00090-X
66.
Kandlikar
,
S. G.
,
2013
, “
Controlling Bubble Motion Over Heated Surface Through Evaporation Momentum Force to Enhance Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
102
(
5
), p.
051611
.10.1063/1.4791682
67.
Raghupathi
,
P. A.
, and
Kandlikar
,
S. G.
,
2016
, “
Bubble Growth and Departure Trajectory Under Asymmetric Temperature Conditions
,”
Int. J. Heat Mass Transfer
,
95
, pp.
824
832
.10.1016/j.ijheatmasstransfer.2015.12.058
68.
Raghupathi
,
P. A.
,
Joshi
,
I. M.
,
Jaikumar
,
A.
,
Emery
,
T. S.
, and
Kandlikar
,
S. G.
,
2017
, “
Bubble Induced Flow Field Modulation for Pool Boiling Enhancement Over a Tubular Surface
,”
Appl. Phys. Lett.
,
110
(
25
), p.
251603
.10.1063/1.4987138
69.
Raghupathi
,
P. A.
, and
Kandlikar
,
S. G.
,
2017
, “
Effect of Thermophysical Properties of the Heater Substrate on Critical Heat Flux in Pool Boiling
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
11
), p. 111502.10.1115/1.4036653
70.
Raghupathi
,
P. A.
, and
Kandlikar
,
S. G.
,
2017
, “
Characterization of Pool Boiling of Seawater and Regulation of Crystallization Fouling by Physical Aberration
,”
Heat Transfer Eng.
,
38
(
14–15
), pp.
1296
1304
.10.1080/01457632.2016.1242963
71.
Shukla
,
M. Y.
, and
Kandlikar
,
S. G.
,
2021
, “
Influence of Liquid Height on Bubble Coalescence, Vapor Venting, Liquid Return, and Heat Transfer in Pool Boiling
,”
Int. J. Heat Mass Transfer
,
173
, p.
121261
.10.1016/j.ijheatmasstransfer.2021.121261
72.
Negi
,
A.
,
Rishi
,
A. M.
, and
Kandlikar
,
S. G.
,
2021
, “
Effect of Heat Flux on Bubble Coalescence Phenomena and Sound Signatures During Pool Boiling
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
5
), p.
051601
.10.1115/1.4050088
73.
Chauhan
,
A.
, and
Kandlikar
,
S. G.
,
2019
, “
High Heat Flux Dissipation Using Symmetric Dual-Taper Manifold in Pool Boiling
,”
ASME
Paper No. ICNMM2019-4292.10.1115/ICNMM2019-4292
74.
Chauhan
,
A.
, and
Kandlikar
,
S. G.
,
2020
,
High Speed Imaging of Bubble Interface Motion in a Tapered Microgap
,
ASME
Paper No. ICNMM2020-1020.10.1115/ICNMM2020-1020
75.
Lu
,
Y.-W.
, and
Kandlikar
,
S.
,
2011
, “
Nanoscale Surface Modification Techniques for Pool Boiling Enhancement—A Critical Review and Future Directions
,”
Heat Transfer Eng.
,
32
(
10
), pp.
827
842
.10.1080/01457632.2011.548267
76.
Patil
,
C.
, and
Kandlikar
,
S.
,
2014
, “
Review of the Manufacturing Techniques for Porous Surfaces Used in Enhanced Pool Boiling
,”
Heat Transfer Eng.
,
35
(
10
), pp.
887
902
.10.1080/01457632.2014.862141
77.
Bhavnani
,
S.
,
Narayanan
,
V.
,
Qu
,
W.
,
Jensen
,
M. K.
,
Kandlikar
,
S.
,
Kim
,
J.
, and
Thome
,
J.
,
2014
, “
Boiling Augmentation With Micro/Nanostructured Surfaces: Current Status and Research Outlook
,”
Nanoscale Microscale Thermophys. Eng.
,
18
(
3
), pp.
197
222
.10.1080/15567265.2014.923074
78.
Raghupathi
,
P.
, and
Kandlikar
,
S.
,
2016
, “
Contact Line Region Heat Transfer Mechanisms for an Evaporating Interface
,”
Int. J. Heat Mass Transfer
,
95
, pp.
296
306
.10.1016/j.ijheatmasstransfer.2015.11.047
79.
Emery
,
T.
,
Jaikumar
,
A.
,
Raghupathi
,
P.
,
Joshi
,
I.
, and
Kandlikar
,
S.
,
2018
, “
Dual Enhancement in HTC and CHF for External Tubular Pool Boiling—A Mechanistic Perspective and Future Directions
,”
Int. J. Heat Mass Transfer
,
122
, pp.
1053
1073
.10.1016/j.ijheatmasstransfer.2018.01.138
80.
Kandlikar
,
S. G.
,
2017
, “
Enhanced Macroconvection Mechanism With Separate Liquid–Vapor Pathways to Improve Pool Boiling Performance
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
5
), p. 051501. 10.1115/1.4035247
81.
Kandlikar
,
S.
,
2019
, “
A New Perspective on Heat Transfer Mechanisms and Sonic Limit in Pool Boiling
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
5
), p. 051501. 10.1115/1.4042702
82.
Cooke
,
D.
, and
Kandlikar
,
S. G.
,
2011
, “
Pool Boiling Heat Transfer and Bubble Dynamics Over Plain and Enhanced Microchannels
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
5
), p. 052902. 10.1115/1.4003046
83.
Yao
,
Z.
,
Lu
,
Y.-W.
, and
Kandlikar
,
S. G.
,
2012
, “
Fabrication of Nanowires on Orthogonal Surfaces of Microchannels and Their Effect on Pool Boiling
,”
J. Micromech. Microeng.
,
22
(
11
), p.
115005
.10.1088/0960-1317/22/11/115005
84.
Mehta
,
J. S.
, and
Kandlikar
,
S. G.
,
2013
, “
Pool Boiling Heat Transfer Enhancement Over Cylindrical Tubes With Water at Atmospheric Pressure, Part I: Experimental Results for Circumferential Rectangular Open Microchannels
,”
Int. J. Heat Mass Transfer
,
64
, pp.
1205
1215
.10.1016/j.ijheatmasstransfer.2013.03.087
85.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2013
, “
Enhanced Pool Boiling With Ethanol at Subatmospheric Pressures for Electronics Cooling
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
11
), p. 111002. 10.1115/1.4024595
86.
Yao
,
Z.
,
Lu
,
Y.-W.
, and
Kandlikar
,
S.
,
2011
, “
Effects of Nanowire Height on Pool Boiling Performance of Water on Silicon Chips
,”
Int. J. Therm. Sci.
,
50
(
11
), pp.
2084
2090
.10.1016/j.ijthermalsci.2011.06.009
87.
Yao
,
Z.
,
Lu
,
Y.
, and
Kandlikar
,
S. G.
,
2011
, “
Direct Growth of Copper Nanowires on a Substrate for Boiling Applications
,”
Micro Nano Lett.
,
6
(
7
), pp.
563
566
.10.1049/mnl.2011.0136
88.
Patil
,
C. M.
,
Santhanam
,
K. S. V.
, and
Kandlikar
,
S. G.
,
2014
, “
Development of a Two-Step Electrodeposition Process for Enhancing Pool Boiling
,”
Int. J. Heat Mass Transfer
,
79
, pp.
989
1001
.10.1016/j.ijheatmasstransfer.2014.08.062
89.
Patil
,
C. M.
, and
Kandlikar
,
S. G.
,
2014
, “
Pool Boiling Enhancement Through Microporous Coatings Selectively Electrodeposited on Fin Tops of Open Microchannels
,”
Int. J. Heat Mass Transfer
,
79
, pp.
816
828
.10.1016/j.ijheatmasstransfer.2014.08.063
90.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2015
, “
Enhanced Pool Boiling Heat Transfer Mechanisms for Selectively Sintered Open Microchannels
,”
Int. J. Heat Mass Transfer
,
88
, pp.
652
661
.10.1016/j.ijheatmasstransfer.2015.04.100
91.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2016
, “
Ultra-High Pool Boiling Performance and Effect of Channel Width With Selectively Coated Open Microchannels
,”
Int. J. Heat Mass Transfer
,
95
, pp.
795
805
.10.1016/j.ijheatmasstransfer.2015.12.061
92.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2015
, “
Enhanced Pool Boiling for Electronics Cooling Using Porous Fin Tops on Open Microchannels With FC-87
,”
Appl. Therm. Eng.
,
91
, pp.
426
433
.10.1016/j.applthermaleng.2015.08.043
93.
Rishi
,
A. M.
,
Kandlikar
,
S. G.
, and
Gupta
,
A.
,
2019
, “
Improved Wettability of Graphene Nanoplatelets (GNP)/Copper Porous Coatings for Dramatic Improvements in Pool Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
132
, pp.
462
472
.10.1016/j.ijheatmasstransfer.2018.11.169
94.
Jaikumar
,
A.
,
Kandlikar
,
S. G.
, and
Gupta
,
A.
,
2016
, “
Dip Coating of Electrochemically Generated Graphene and Graphene Oxide Coatings to Enhance Pool Boiling Performance
,”
ASME
Paper No. ICNMM2016-7973.10.1115/ICNMM2016-7973
95.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2016
, “
Pool Boiling Enhancement Through Bubble Induced Convective Liquid Flow in Feeder Microchannels
,”
Appl. Phys. Lett.
,
108
(
4
), p.
041604
.10.1063/1.4941032
96.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2017
, “
Pool Boiling Inversion Through Bubble Induced Macroconvection
,”
Appl. Phys. Lett.
,
110
(
9
), p.
094107
.10.1063/1.4977557
97.
Emery
,
T. S.
, and
Kandlikar
,
S. G.
,
2017
, “
Pool Boiling With Four Non-Ozone Depleting Refrigerants and Comparison With Previously Established Correlations
,”
Exp. Therm. Fluid Sci.
,
85
, pp.
132
139
.10.1016/j.expthermflusci.2017.02.027
98.
Jaikumar
,
A.
,
Emery
,
T. S.
, and
Kandlikar
,
S. G.
,
2018
, “
Interplay Between Developing Flow Length and Bubble Departure Diameter During Macroconvection Enhanced Pool Boiling
,”
Appl. Phys. Lett.
,
112
(
7
), p.
071603
.10.1063/1.5016307
99.
Jaikumar
,
A.
,
Rishi
,
A.
,
Gupta
,
A.
, and
Kandlikar
,
S. G.
,
2017
, “
Microscale Morphology Effects of Copper–Graphene Oxide Coatings on Pool Boiling Characteristics
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
11
), p.
111509
.10.1115/1.4036695
100.
Jaikumar
,
A.
,
Gupta
,
A.
,
Kandlikar
,
S. G.
,
Yang
,
C.-Y.
, and
Su
,
C.-Y.
,
2017
, “
Scale Effects of Graphene and Graphene Oxide Coatings on Pool Boiling Enhancement Mechanisms
,”
Int. J. Heat Mass Transfer
,
109
, pp.
357
366
.10.1016/j.ijheatmasstransfer.2017.01.110
101.
Jaikumar
,
A.
,
Kandlikar
,
S. G.
, and
Gupta
,
A.
,
2017
, “
Pool Boiling Enhancement Through Graphene and Graphene Oxide Coatings
,”
Heat Transfer Eng.
,
38
(
14–15
), pp.
1274
1284
.10.1080/01457632.2016.1242959
102.
Gupta
,
A.
,
Jaikumar
,
A.
,
Kandlikar
,
S.
,
Rishi
,
A.
, and
Layman
,
A.
,
2018
, “
A Multiscale Morphological Insight Into Graphene Based Coatings for Pool Boiling Applications
,”
Heat Transfer Eng.
,
39
(
15
), pp.
1331
1343
.10.1080/01457632.2017.1366228
103.
Wong
,
P.
,
Santhanam
,
K.
, and
Kandlikar
,
S.
,
2018
, “
Cobalt Deposition in Graphene Quantum Dot Bath: Electrochemical and Spectroscopic Features: A Prospective Sensor Material
,”
J. Electrochem. Soc.
,
165
(
5
), pp.
B232
B239
.10.1149/2.0041807jes
104.
Jaikumar
,
A.
,
Santhanam
,
K. S. V.
,
Kandlikar
,
S. G.
,
Raya
,
I. B. P.
, and
Raghupathi
,
P.
,
2015
, “
Electrochemical Deposition of Copper on Graphene With High Heat Transfer Coefficient
,”
ECS Trans.
,
66
(
30
), pp.
55
64
.10.1149/06630.0055ecst
105.
Protich
,
Z.
,
Santhanam
,
K. S. V.
,
Jaikumar
,
A.
,
Kandlikar
,
S. G.
, and
Wong
,
P.
,
2016
, “
Electrochemical Deposition of Copper in Graphene Quantum Dot Bath: Pool Boiling Enhancement
,”
J. Electrochem. Soc.
,
163
(
6
), pp.
E166
E172
.10.1149/2.0961606jes
106.
Rishi
,
A. M.
,
Rozati
,
S. A.
,
Trybus
,
C.
,
Kandlikar
,
S. G.
, and
Gupta
,
A.
,
2021
, “
Investigation of Structure-Property-Boiling Enhancement Mechanisms of Copper/Graphene Nanoplatelets Coatings
,”
Front. Mech. Eng.
,
7
, p.
642214
.10.3389/fmech.2021.642214
107.
Rishi
,
A. M.
,
Kandlikar
,
S. G.
,
Rozati
,
S. A.
, and
Gupta
,
A.
,
2020
, “
Effect of Ball Milled and Sintered Graphene Nanoplatelets–Copper Composite Coatings on Bubble Dynamics and Pool Boiling Heat Transfer
,”
Adv. Eng. Mater.
,
22
(
7
), p.
1901562
.10.1002/adem.201901562
108.
Rishi
,
A. M.
,
Kandlikar
,
S. G.
, and
Gupta
,
A.
,
2020
, “
Salt Templated and Graphene Nanoplatelets Draped Copper (GNP-Draped-Cu) Composites for Dramatic Improvements in Pool Boiling Heat Transfer
,”
Sci. Rep.
,
10
(
1
), p.
11941
.10.1038/s41598-020-68672-1
109.
Rishi
,
A. M.
,
Kandlikar
,
S. G.
, and
Gupta
,
A.
,
2019
, “
Repetitive Pool Boiling Runs: A Controlled Process to Form Reduced Graphene Oxide Surfaces From Graphene Oxide With Tunable Surface Chemistry and Morphology
,”
Ind. Eng. Chem. Res.
,
58
(
17
), pp.
7156
7165
.10.1021/acs.iecr.8b06062
110.
Rishi
,
A. M.
,
Gupta
,
A.
, and
Kandlikar
,
S. G.
,
2018
, “
Improving Aging Performance of Electrodeposited Copper Coatings During Pool Boiling
,”
Appl. Therm. Eng.
,
140
, pp.
406
414
.10.1016/j.applthermaleng.2018.05.061
111.
Jaikumar
,
A.
, and
Kandlikar
,
S.
,
2017
, “
Coupled Motion of Contact Line on Nanoscale Chemically Heterogeneous Surfaces for Improved Bubble Dynamics in Boiling
,”
Sci. Rep.
,
7
(
1
), p.
15691
.
112.
Raghupathi
,
P. A.
, and
Kandlikar
,
S. G.
,
2017
, “
Pool Boiling Enhancement Through Contact Line Augmentation
,”
Appl. Phys. Lett.
,
110
(
20
), p.
204101
.10.1063/1.4983720
113.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
, and
Mukherjee
,
A.
,
2005
, “
Experimental Study of Heat Transfer in an Evaporating Meniscus on a Moving Heated Surface
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
3
), pp.
244
252
.10.1115/1.1857948
114.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2006
, “
Numerical Study of an Evaporating Meniscus on a Moving Heated Surface
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
12
), pp.
1285
1292
.10.1115/1.2397093
115.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2007
, “
Numerical Study of Single Bubbles With Dynamic Contact Angle During Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
50
(
1–2
), pp.
127
138
.10.1016/j.ijheatmasstransfer.2006.06.037
116.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2005
, “
Numerical Simulation of Growth of a Vapor Bubble During Flow Boiling of Water in a Microchannel
,”
Microfluid Nanofluid
,
1
(
2
), pp.
137
145
.10.1007/s10404-004-0021-8
117.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2009
, “
The Effect of Inlet Constriction on Bubble Growth During Flow Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
5204
5212
.10.1016/j.ijheatmasstransfer.2009.04.025
118.
Mukherjee
,
A.
,
Kandlikar
,
S. G.
, and
Edel
,
Z. J.
,
2011
, “
Numerical Study of Bubble Growth and Wall Heat Transfer During Flow Boiling in a Microchannel
,”
Int. J. Heat Mass Transfer
,
54
(
15–16
), pp.
3702
3718
.10.1016/j.ijheatmasstransfer.2011.01.030
119.
Perez-Raya
,
I.
, and
Kandlikar
,
S. G.
,
2016
, “
Numerical Modeling of Interfacial Heat and Mass Transport Phenomena During a Phase Change Using ANSYS-Fluent
,”
Numer. Heat Transfer, Part B Fundam.
,
70
(
4
), pp.
322
339
.10.1080/10407790.2016.1215708
120.
Perez-Raya
,
I.
, and
Kandlikar
,
S. G.
,
2016
, “
Chapter Three - Evaporation on a Planar Interface—Numerical Simulation and Theoretical Analysis of Heat and Mass Transport Processes
,”
Advances in Heat Transfer
,
E. M.
Sparrow
,
J. P.
Abraham
,
J. M.
Gorman
,
T. F.
Irvine
, and
J. P.
Hartnett
, eds.,
Elsevier
, Vol. 48, pp.
125
190
.10.1016/bs.aiht.2016.08.005
121.
Perez-Raya
,
I.
, and
Kandlikar
,
S. G.
,
2018
, “
Discretization and Implementation of a Sharp Interface Model for Interfacial Heat and Mass Transfer During Bubble Growth
,”
Int. J. Heat Mass Transfer
,
116
, pp.
30
49
.10.1016/j.ijheatmasstransfer.2017.08.106
122.
Perez-Raya
,
I.
, and
Kandlikar
,
S. G.
,
2018
, “
Numerical Models to Simulate Heat and Mass Transfer at Sharp Interfaces in Nucleate Boiling
,”
Numer. Heat Transfer, Part A Appl.
,
74
(
10
), pp.
1583
1610
.10.1080/10407782.2018.1543918
123.
Kandlikar
,
S. G.
, and
Alves
,
L.
,
1999
, “
Effects of Surface Tension and Binary Diffusion on Pool Boiling of Dilute Solutions: An Experimental Assessment
,”
ASME J. Heat Transfer-Trans. ASME
,
121
(
2
), pp.
488
493
.10.1115/1.2826008
124.
Emery
,
T. S.
,
Raghupathi
,
P. A.
, and
Kandlikar
,
S. G.
,
2018
, “
Flow Regimes and Transition Criteria During Passage of Bubbles Through a Liquid–Liquid Interface
,”
Langmuir
,
34
(
23
), pp.
6766
6776
.10.1021/acs.langmuir.8b01217
125.
Emery
,
T. S.
, and
Kandlikar
,
S. G.
,
2019
, “
Film Size During Bubble Collision With a Solid Surface
,”
ASME J. Fluids Eng.
,
141
(
7
), p.
071302
.10.1115/1.4041990
126.
Emery
,
T. S.
, and
Kandlikar
,
S. G.
,
2019
, “
Modeling Bubble Collisions at Liquid?Liquid and Compound Interfaces
,”
Langmuir
,
35
(
25
), pp.
8294
8307
.10.1021/acs.langmuir.9b01209
127.
Kandlikar
,
S. G.
, and
Lu
,
Z.
,
2009
, “
Thermal Management Issues in a PEMFC Stack—A Brief Review of Current Status
,”
Appl. Therm. Eng.
,
29
(
7
), pp.
1276
1280
.10.1016/j.applthermaleng.2008.05.009
128.
Owejan
,
J.
,
Trabold
,
T.
,
Jacobson
,
D.
,
Arif
,
M.
, and
Kandlikar
,
S.
,
2007
, “
Effects of Flow Field and Diffusion Layer Properties on Water Accumulation in a PEM Fuel Cell
,”
Int. J. Hydrogen Energy
,
32
(
17
), pp.
4489
4502
.10.1016/j.ijhydene.2007.05.044
129.
Owejan
,
J. P.
,
Gagliardo
,
J. J.
,
Sergi
,
J. M.
,
Kandlikar
,
S. G.
, and
Trabold
,
T. A.
,
2009
, “
Water Management Studies in PEM Fuel Cells, Part I: Fuel Cell Design and In Situ Water Distributions
,”
Int. J. Hydrogen Energy
,
34
(
8
), pp.
3436
3444
.10.1016/j.ijhydene.2008.12.100
130.
Kandlikar
,
S. G.
,
Lu
,
Z.
,
Domigan
,
W. E.
,
White
,
A. D.
, and
Benedict
,
M. W.
,
2009
, “
Measurement of Flow Maldistribution in Parallel Channels and Its Application to Ex-Situ and in-Situ Experiments in PEMFC Water Management Studies
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
1741
1752
.10.1016/j.ijheatmasstransfer.2008.09.025
131.
Lu
,
Z.
,
Kandlikar
,
S. G.
,
Rath
,
C.
,
Grimm
,
M.
,
Domigan
,
W.
,
White
,
A. D.
,
Hardbarger
,
M.
,
Owejan
,
J. P.
, and
Trabold
,
T. A.
,
2009
, “
Water Management Studies in PEM Fuel Cells, Part II: Ex Situ Investigation of Flow Maldistribution, Pressure Drop and Two-Phase Flow Pattern in Gas Channels
,”
Int. J. Hydrogen Energy
,
34
(
8
), pp.
3445
3456
.10.1016/j.ijhydene.2008.12.025
132.
Kandlikar
,
S. G.
,
Lu
,
Z.
,
Lin
,
T. Y.
,
Cooke
,
D.
, and
Daino
,
M.
,
2009
, “
Uneven Gas Diffusion Layer Intrusion in Gas Channel Arrays of Proton Exchange Membrane Fuel Cell and Its Effects on Flow Distribution
,”
J. Power Sources
,
194
(
1
), pp.
328
337
.10.1016/j.jpowsour.2009.05.019
133.
Lu
,
Z.
,
Rath
,
C.
,
Zhang
,
G.
, and
Kandlikar
,
S. G.
,
2011
, “
Water Management Studies in PEM Fuel Cells, Part IV: Effects of Channel Surface Wettability, Geometry and Orientation on the Two-Phase Flow in Parallel Gas Channels
,”
Int. J. Hydrogen Energy
,
36
(
16
), pp.
9864
9875
.10.1016/j.ijhydene.2011.04.226
134.
Banerjee
,
R.
, and
Kandlikar
,
S. G.
,
2014
, “
Liquid Water Quantification in the Cathode Side Gas Channels of a Proton Exchange Membrane Fuel Cell Through Two-Phase Flow Visualization
,”
J. Power Sources
,
247
, pp.
9
19
.10.1016/j.jpowsour.2013.08.016
135.
Daino
,
M. M.
,
Lu
,
Z.
,
LaManna
,
J. M.
,
Owejan
,
J. P.
,
Trabold
,
T. A.
, and
Kandlikar
,
S. G.
,
2011
, “
Through-Plane Water Transport Visualization in a PEMFC by Visible and Infrared Imaging
,”
Electrochem. Solid-State Lett.
,
14
(
6
), p.
B51
.10.1149/1.3560163
136.
Sergi
,
J. M.
, and
Kandlikar
,
S. G.
,
2011
, “
Quantification and Characterization of Water Coverage in PEMFC Gas Channels Using Simultaneous Anode and Cathode Visualization and Image Processing
,”
Int. J. Hydrogen Energy
,
36
(
19
), pp.
12381
12392
.10.1016/j.ijhydene.2011.06.092
137.
Lu
,
Z.
,
Daino
,
M. M.
,
Rath
,
C.
, and
Kandlikar
,
S. G.
,
2010
, “
Water Management Studies in PEM Fuel Cells, Part III: Dynamic Breakthrough and Intermittent Drainage Characteristics From GDLs With and Without MPLs
,”
Int. J. Hydrogen Energy
,
35
(
9
), pp.
4222
4233
.10.1016/j.ijhydene.2010.01.012
138.
Grimm
,
M.
,
See
,
E. J.
, and
Kandlikar
,
S. G.
,
2012
, “
Modeling Gas Flow in PEMFC Channels: Part I—Flow Pattern Transitions and Pressure Drop in a Simulated Ex Situ Channel With Uniform Water Injection Through the GDL
,”
Int. J. Hydrogen Energy
,
37
(
17
), pp.
12489
12503
.10.1016/j.ijhydene.2012.06.001
139.
Daino
,
M. M.
, and
Kandlikar
,
S. G.
,
2012
, “
3D Phase-Differentiated GDL Microstructure Generation With Binder and PTFE Distributions
,”
Int. J. Hydrogen Energy
,
37
(
6
), pp.
5180
5189
.10.1016/j.ijhydene.2011.12.050
140.
Rath
,
C. D.
, and
Kandlikar
,
S. G.
,
2011
, “
Liquid Filling in a Corner With a Fibrous Wall—an Application to Two-Phase Flow in PEM Fuel Cell Gas Channels
,”
Colloids Surf. A Physicochem. Eng. Aspects
,
384
(
1–3
), pp.
653
660
.10.1016/j.colsurfa.2011.05.039
141.
Gopalan
,
P.
, and
Kandlikar
,
S. G.
,
2012
, “
Droplet-Sidewall Dynamic Interactions in PEMFC Gas Channels
,”
J. Electrochem. Soc.
,
159
(
8
), pp.
F468
F475
.10.1149/2.066208jes
142.
Gopalan
,
P.
, and
Kandlikar
,
S. G.
,
2014
, “
Effect of Channel Materials and Trapezoidal Corner Angles on Emerging Droplet Behavior in Proton Exchange Membrane Fuel Cell Gas Channels
,”
J. Power Sources
,
248
, pp.
230
238
.10.1016/j.jpowsour.2013.09.070
143.
LaManna
,
J. M.
, and
Kandlikar
,
S. G.
,
2011
, “
Determination of Effective Water Vapor Diffusion Coefficient in Pemfc Gas Diffusion Layers
,”
Int. J. Hydrogen Energy
,
36
(
8
), pp.
5021
5029
.10.1016/j.ijhydene.2011.01.036
144.
Koz
,
M.
, and
Kandlikar
,
S. G.
,
2015
, “
Interfacial Oxygen Transport Resistance in a Proton Exchange Membrane Fuel Cell Air Channel With an Array of Water Droplets
,”
Int. J. Heat Mass Transfer
,
80
, pp.
180
191
.10.1016/j.ijheatmasstransfer.2014.08.079
145.
Koz
,
M.
, and
Kandlikar
,
S. G.
,
2016
, “
Oxygen Transport Resistance at Gas Diffusion Layer – Air Channel Interface With Film Flow of Water in a Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
302
, pp.
331
342
.10.1016/j.jpowsour.2015.10.080
146.
Banerjee
,
R.
, and
Kandlikar
,
S. G.
,
2014
, “
Experimental Investigation of Two-Phase Flow Pressure Drop Transients in Polymer Electrolyte Membrane Fuel Cell Reactant Channels and Their Impact on the Cell Performance
,”
J. Power Sources
,
268
, pp.
194
203
.10.1016/j.jpowsour.2014.05.123
147.
Banerjee
,
R.
, and
Kandlikar
,
S. G.
,
2014
, “
Two-Phase Pressure Drop Response During Load Transients in a PEMFC
,”
Int. J. Hydrogen Energy
,
39
(
33
), pp.
19079
19086
.10.1016/j.ijhydene.2014.09.102
148.
Banerjee
,
R.
, and
Kandlikar
,
S. G.
,
2015
, “
Two-Phase Flow and Thermal Transients in Proton Exchange Membrane Fuel Cells – A Critical Review
,”
Int. J. Hydrogen Energy
,
40
(
10
), pp.
3990
4010
.10.1016/j.ijhydene.2015.01.126
149.
Gopalan
,
P.
, and
Kandlikar
,
S. G.
,
2013
, “
Effect of Channel Material on Water Droplet Dynamics in a PEMFC Gas Channel
,”
J. Electrochem. Soc.
,
160
(
6
), pp.
F487
F495
.10.1149/2.030306jes
150.
Gopalan
,
P.
, and
Kandlikar
,
S. G.
,
2014
, “
Modeling Dynamic Interaction Between an Emerging Water Droplet and the Sidewall of a Trapezoidal Channel
,”
Colloids Surf. A Physicochem. Eng. Aspects
,
441
, pp.
262
274
.10.1016/j.colsurfa.2013.09.013
151.
Kandlikar
,
S. G.
,
Perez-Raya
,
I.
,
Raghupathi
,
P. A.
,
Gonzalez-Hernandez
,
J.-L.
,
Dabydeen
,
D.
,
Medeiros
,
L.
, and
Phatak
,
P.
,
2017
, “
Infrared Imaging Technology for Breast Cancer Detection – Current Status, Protocols and New Directions
,”
Int. J. Heat Mass Transfer
,
108
, pp.
2303
2320
.10.1016/j.ijheatmasstransfer.2017.01.086
152.
Gonzalez-Hernandez
,
J.-L.
,
Recinella
,
A. N.
,
Kandlikar
,
S. G.
,
Dabydeen
,
D.
,
Medeiros
,
L.
, and
Phatak
,
P.
,
2019
, “
Technology, Application and Potential of Dynamic Breast Thermography for the Detection of Breast Cancer
,”
Int. J. Heat Mass Transfer
,
131
, pp.
558
573
.10.1016/j.ijheatmasstransfer.2018.11.089
153.
Recinella
,
A. N.
,
Gonzalez-Hernandez
,
J.-L.
,
Kandlikar
,
S. G.
,
Dabydeen
,
D.
,
Medeiros
,
L.
, and
Phatak
,
P.
,
2020
, “
Clinical Infrared Imaging in the Prone Position for Breast Cancer Screening—Initial Screening and Digital Model Validation
,”
ASME J. Med. Diagn.
,
3
(
1
), p.
011005
.10.1115/1.4045319
154.
Gonzalez-Hernandez
,
J.-L.
,
Kandlikar
,
S. G.
,
Dabydeen
,
D.
,
Medeiros
,
L.
, and
Phatak
,
P.
,
2018
, “
Generation and Thermal Simulation of a Digital Model of the Female Breast in Prone Position
,”
ASME J. Med. Diagn.
,
1
(
4
), p.
041006
.10.1115/1.4041421
155.
Gonzalez-Hernandez
,
J.-L.
,
Recinella
,
A. N.
,
Kandlikar
,
S. G.
,
Dabydeen
,
D.
,
Medeiros
,
L.
, and
Phatak
,
P.
,
2020
, “
An Inverse Heat Transfer Approach for Patient-Specific Breast Cancer Detection and Tumor Localization Using Surface Thermal Images in the Prone Position
,”
Infrared Phys. Technol.
,
105
, p.
103202
.10.1016/j.infrared.2020.103202
156.
Awad
,
M. M.
,
2012
, “
Discussion: ‘Heat Transfer Mechanisms During Flow Boiling in Microchannels’ (Kandlikar, S. G., 2004, ASME J. Heat Transfer-Trans. ASME, 126(1), pp. 8–16)
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
1
), p.
015501
.10.1115/1.4004769
157.
Awad
,
M. M.
,
2013
, “
Comments on ‘Boiling Heat Transfer in Rectangular Microchannels With Reentrant Cavities
,”
Int. J. Heat Mass Transfer
,
62
, pp.
541
542
.10.1016/j.ijheatmasstransfer.2013.03.022
158.
Awad
,
M. M.
,
2013
, “
Comments on ‘Experimental Study of Flow Boiling of FC-72 in Parallel Minichannels Under Sub-Atmospheric Pressure
,”
Appl. Therm. Eng.
,
56
(
1–2
), pp.
110
111
.10.1016/j.applthermaleng.2013.03.023
159.
Awad
,
M. M.
,
2015
, “
Kandlikar Third Number Map for Flow Boiling in Micro-Channels and Micro-Gravity
,”
Therm. Sci.
,
19
(
3
), pp.
1131
1134
.10.2298/TSCI150320043A
160.
Kandlikar
,
S. G.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
, eds.,
2006
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier Science
,
Oxford
, UK, pp.
vi
vii
.
161.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
162.
Phillips
,
R. J.
,
1987
, “
Forced-Convection, Liquid-Cooled, Microchannel Heat Sinks
,”
M.S. thesis
,
Massachusetts Institute of Technology
, Cambridge, MA.http://hdl.handle.net/1721.1/14921
163.
The International Institute of Refrigeration, 2005, 17th Informatory Note on Refrigeration Technology
,
2005
,
How to Improve Energy Efficiency in Refrigeration Equipment
,
Paris, France
.
164.
Nikuradse
,
J.
,
1937
, “
Laws of Flow in Rough Pipes
,”
NACA
, Report No. 1292.http://hdl.handle.net/2060/19930093938
165.
Mori
,
S.
, and
Okuyama
,
K.
,
2009
, “
Enhancement of the Critical Heat Flux in Saturated Pool Boiling Using Honeycomb Porous Media
,”
Int. J. Multiphase Flow
,
35
(
10
), pp.
946
951
.10.1016/j.ijmultiphaseflow.2009.05.003
166.
Rahman
,
M. M.
,
Ölçeroğlu
,
E.
, and
McCarthy
,
M.
,
2014
, “
Role of Wickability on the Critical Heat Flux of Structured Superhydrophilic Surfaces
,”
Langmuir
,
30
(
37
), pp.
11225
11234
.10.1021/la5030923
167.
Može
,
M.
,
2020
, “
Effect of Boiling-Induced Aging on Pool Boiling Heat Transfer Performance of Untreated and Laser-Textured Copper Surfaces
,”
Appl. Therm. Eng.
,
181
, p.
116025
.10.1016/j.applthermaleng.2020.116025
168.
Zou
,
A.
, and
Maroo
,
S. C.
,
2013
, “
Critical Height of Micro/Nano Structures for Pool Boiling Heat Transfer Enhancement
,”
Appl. Phys. Lett.
,
103
(
22
), p.
221602
.10.1063/1.4833543
169.
Li
,
C. H.
,
Li
,
T.
,
Hodgins
,
P.
,
Hunter
,
C. N.
,
Voevodin
,
A. A.
,
Jones
,
J. G.
, and
Peterson
,
G. P.
,
2011
, “
Comparison Study of Liquid Replenishing Impacts on Critical Heat Flux and Heat Transfer Coefficient of Nucleate Pool Boiling on Multiscale Modulated Porous Structures
,”
Int. J. Heat Mass Transfer
,
54
(
15–16
), pp.
3146
3155
.10.1016/j.ijheatmasstransfer.2011.03.062
170.
Chu
,
K.-H.
,
Joung
,
Y. S.
,
Enright
,
R.
,
Buie
,
C. R.
, and
Wang
,
E. N.
,
2013
, “
Hierarchically Structured Surfaces for Boiling Critical Heat Flux Enhancement
,”
Appl. Phys. Lett.
,
102
(
15
), p.
151602
.10.1063/1.4801811
171.
Nakayama
,
W.
,
Daikoku
,
T.
,
Kuwahara
,
H.
, and
Nakajima
,
T.
,
1980
, “
Dynamic Model of Enhanced Boiling Heat Transfer on Porous Surfaces—Part I: Experimental Investigation
,”
ASME J. Heat Transfer-Trans. ASME
,
102
(
3
), pp.
445
450
.10.1115/1.3244320
172.
Rishi
,
A. M.
, and
Gupta
,
A.
,
2020
, “
Fundamental Insight on Morphological Changes of Graphene Nanoplatelets-Copper (GNP-Cu) Coatings: Effects of Repetitive Pool Boiling Tests
,”
ASME
Paper No. ICNMM2020-1027.10.1115/ICNMM2020-1027
173.
Bardia
,
R.
, and
Trujillo
,
M. F.
,
2019
, “
Assessing the Physical Validity of Highly-Resolved Simulation Benchmark Tests for Flows Undergoing Phase Change
,”
Int. J. Multiphase Flow
,
112
, pp.
52
62
.10.1016/j.ijmultiphaseflow.2018.11.018
You do not currently have access to this content.