The purpose of this paper is to consider a possibility of the independent column approximation for solving the radiative heat fluxes in a 3D turbulent channel flow. This simulation method is the simplest extension of the plane-parallel radiative heat transfer. The test case of the temperature profile was obtained from the direct numerical simulation. We demonstrate the comparison between the 3D radiative transfer simulation and the independent column approximation with an inhomogeneous temperature field and optical properties. The above mentioned results show the trivial discrepancies between the 3D simulation and the independent column approximation. The required processing time for the independent column approximation is much faster than the 3D radiative transfer simulation due to the simple algorithm. Although the independent column simulation is restricted to simple configurations such as channel flow in this paper, wide application areas are expected due to the computational efficiency.

1.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
, 2nd ed.,
Academic
,
New York
.
2.
Maruyama
,
S.
, 2004,
Light Energy Engineering
,
Yoken-do
,
Tokyo
, in Japanese.
3.
Mazumder
,
S.
, and
Modest
,
M. F.
, 1999, “
Turbulence-Radiation Interactions in Nonreactive Flow of Combustion Gases
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
726
729
.
4.
Velusamy
K.
,
Sundararajan
T.
, and
Seetharamu
K. N.
, 2001, “
Interaction Effects Between Surface Radiation and Turbulent Natural Convection in Square and Rectangular Enclosures
,”
ASME J. Heat Transfer
0022-1481,
123
(
6
), pp.
1062
1070
.
5.
Zheng
,
Y.
,
Barlow
,
R. S.
, and
Gore
,
J. P.
, 2003, “
Spectral Radiation Properties of Partially Premixed Turbulent Flames
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
1065
1073
.
6.
Ridouane
E. H.
, and
Hasnaoui
M.
, 2006, “
Effect of Surface Radiation on Multiple Natural Convection Solutions in a Square Cavity Partially Heated From Below
,”
ASME J. Heat Transfer
0022-1481,
128
(
10
), pp.
1012
1021
.
7.
Paul
,
M. C.
, 2008, “
Performance of the Various Sn Approximations of DOM in a 3D Combustion Chamber
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
072701
.
8.
Husain
,
A.
,
Baig
,
M. F.
, and
Varshney
,
H.
, 2009, “
Turbulent Rotating Rayleigh–Benard Convection: Spatiotemporal and Statistical Study
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
022501
.
9.
Song
,
T. H.
, and
Viskanta
,
R.
, 1987, “
Interaction of Radiation With Turbulence: Application to a Combustion System
,”
J. Thermophys. Heat Transfer
0887-8722,
1
, pp.
56
62
.
10.
Li
,
G.
, and
Modest
,
M. F.
, 2003, “
Importance of Turbulence-Radiation Interactions in Turbulent Diffusion Jet Flames
,”
ASME J. Heat Transfer
0022-1481,
125
(
5
), pp.
831
838
.
11.
Tesse
,
L.
,
Dupoirieux
,
F.
, and
Taine
,
J.
, 2004, “
Monte Carlo Modeling of Radiative Transfer in a Turbulent Sooty Flame
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
3
), pp.
555
572
.
12.
Duval
,
R.
,
Soufiani
,
A.
, and
Taine
,
J.
, 2004, “
Coupled Radiation and Turbulent Multiphase Flow in an Aluminised Solid Propellant Rocket Engine
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
84
(
4
), pp.
513
526
.
13.
Fusegi
,
T.
, and
Farouk
,
B.
, 1989, “
Laminar and Turbulent Natural Convection-Radiation Interactions in a Square Enclosure Filled With a Nongray Gas
,”
Numer. Heat Transfer, Part A
1040-7782,
15
(
3
), pp.
303
322
.
14.
Yucel
,
A.
,
Acharya
,
S.
, and
Williams
,
M. L.
, 1989, “
Natural-Convection and Radiation in a Square Enclosure
,”
Numer. Heat Transfer, Part A
1040-7782,
15
(
2
), pp.
261
278
.
15.
Dehghan
,
A. A.
, and
Behnia
,
M.
, 1996, “
Combined Natural Convection-Conduction and Radiation Heat Transfer in a Discretely Heated Open Cavity
,”
ASME J. Heat Transfer
0022-1481,
118
(
1
), pp.
56
64
.
16.
Matsubara
,
K.
,
Kobayashi
,
M.
, and
Maekawa
,
H.
, 1998, “
Direct Numerical Simulation of a Turbulent Channel Flow With a Linear Spanwise Mean Temperature Gradient
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
3627
3634
.
17.
Matsubara
,
K.
,
Kobayashi
,
M.
,
Sakai
,
T.
, and
Suto
,
H.
, 2001, “
A Study on Spanwise Heat Transfer in a Turbulent Channel Flow—Education of Coherent Structures by a Conditional Sampling Technique
,”
Int. J. Heat Fluid Flow
0142-727X,
22
(
3
), pp.
213
219
.
18.
Kasagi
,
N.
,
Tomita
,
T.
, and
Kuroda
,
A.
, 1992, “
Direct Numerical Simulation of Passive Scalar Field in a Turbulent Channel Flow
,”
ASME J. Heat Transfer
0022-1481,
114
, pp.
598
606
.
19.
Wu
,
Y.
,
Haworth
,
D. C.
,
Modest
,
M. F.
, and
Cuenot
,
B.
, 2005, “
Direct Numerical Simulation of Turbulence/Radiation Interaction in Premixed Combustion Systems
,”
Proc. Combust. Inst.
1540-7489,
30
(
1
), pp.
639
646
.
20.
Cahalan
,
R. F.
,
Ridgway
,
W.
,
Wiscombe
,
W. J.
,
Gollmer
,
S.
, and
Harshvardhan
, 1994, “
Independent Pixel and Monte Carlo Estimates of Stratocumulus Albedo
,”
J. Atmos. Sci.
0022-4928,
51
(
24
), pp.
3776
3790
.
21.
O’Hirok
,
W.
, and
Gautier
,
C.
, 1998, “
A Three-Dimensional Radiative Transfer Model to Investigate the Solar Radiation Within a Cloudy Atmosphere. Part 1: Spatial Effects
,”
J. Atmos. Sci.
0022-4928,
55
, pp.
2162
2179
.
22.
Maruyama
,
S.
,
Sakurai
,
A.
, and
Komiya
,
A.
, 2007, “
Discrete Ordinates Radiation Element Method for Radiative Heat Transfer in Three-Dimensional Participating Media
,”
Numer. Heat Transfer, Part B
1040-7790,
51
, pp.
121
140
.
23.
Maruyama
S.
,
Aihara
T.
, 1997, “
Radiation Heat Transfer of Arbitrary Three-Dimensional Absorbing, Emitting and Scattering Media and Specular and Diffuse Surfaces
,”
ASME J. Heat Transfer
0022-1481,
119
(
1
), pp.
129
136
.
24.
Maruyama
,
S.
, and
Guo
,
Z. X.
, 1999, “
Radiative Heat Transfer in Arbitrary Configurations With Nongray Absorbing, Emitting, and Anisotropic Scattering Media
,”
ASME J. Heat Transfer
0022-1481,
121
(
3
), pp.
722
726
.
25.
Guo
,
Z. X.
, and
Maruyama
,
S.
, 2001, “
Prediction of Radiative Heat Transfer in Industrial Equipment Using the Radiation Element Method
,”
ASME J. Pressure Vessel Technol.
0094-9930,
123
(
4
), pp.
530
536
.
26.
Sakurai
,
A.
,
Maruyama
,
S.
,
Sakai
,
S.
, and
Nishikawa
,
T.
, 2005, “
The Effect of Three-Dimensional Radiative Heat Transfer in Cloud Fields Using the Radiation Element Method
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
93
(
1–3
), pp.
79
87
.
27.
Lockwood
,
F. C.
, and
Shah
,
N. G.
, 1981, “
A New Radiation Solution Method for Incorporation in General Combustion Prediction Procedures
,”
Proceedings of the Combustion Institute
, pp.
1405
1414
.
You do not currently have access to this content.