Research efforts on flow boiling in microchannels were focused on stabilizing the flow during the early part of the last decade. After achieving that goal through inlet restrictors and distributed nucleation sites, the focus has now shifted on improving its performance for high heat flux dissipation. The recent worldwide efforts described in this paper are aimed at increasing the critical heat flux (CHF) and reducing the pressure drop, with an implicit goal of dissipating 1 kW/cm2 for meeting the high-end target in electronics cooling application. The underlying mechanisms in these studies are identified and critically evaluated for their potential in meeting the high heat flux dissipation goals. Future need to simultaneously increase the CHF and the heat transfer coefficient (HTC) has been identified and hierarchical integration of nanoscale and microscale technologies is deemed necessary for developing integrated pathways toward meeting this objective.

References

1.
Kandlikar
,
S. G.
,
2002
, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
389
407
.
2.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Segal
,
Z.
, and
Pogrebnyak
,
E.
,
2003
, “
Two-Phase Flow Patterns in Parallel Microchannels
,”
Int. J. Multiphase Flow
,
29
(
3
), pp.
341
360
.
3.
Yen
,
T.-H.
,
Kasagi
,
N.
, and
Suzuki
,
Y.
,
2003
, “
Forced Convective Boiling Heat Transfer in Microtubes at Low Mass and Heat Fluxes
,”
Int. J. Multiphase Flow
,
29
(
12
), pp.
1771
1792
.
4.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
An Experimental Investigation of Flow Boiling Characteristics of Water in Parallel Microchannels
,”
ASME J. Heat Transfer
,
126
(
4
), pp.
518
526
.
5.
Balasubramaina
,
P.
, and
Kandlikar
,
S. G.
,
2003
, “
High-Speed Photographic Observation of Flow Patterns During Flow Boiling in Single Rectangular Minichannel
,”
ASME
Paper No. HT2003-47175.
6.
Hetsroni
,
G.
,
Klein
,
D.
,
Mosyak
,
A.
,
Segal
,
Z.
, and
Pogrebnyak
,
E.
,
2004
, “
Convective Boiling in Parallel Microchannels
,”
Microscale Thermophys. Eng.
,
8
(
4
), pp.
403
421
.
7.
Qu
,
W.
, and
Mudawar
,
I.
,
2004
, “
Transport Phenomena in Two-Phase Microchannel Heat Sinks
,”
ASME J. Electron. Packag.
,
126
(
2
), pp.
213
224
.
8.
Wu
,
H. Y.
, and
Cheng
,
P.
,
2003
, “
Visualization and Measurements of Periodic Boiling in Silicon Microchannels
,”
Int. J. Heat Mass Transfer
,
46
(
14
), pp.
2603
2614
.
9.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Segal
,
Z.
,
2005
, “
Explosive Boiling of Water in Parallel Micro-Channels
,”
Int. J. Multiphase Flow
,
31
(
4
), pp.
371
392
.
10.
Bergles
,
A. E.
, and
Kandlikar
,
S. G.
,
2005
, “
On the Nature of Critical Heat Flux in Microchannels
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
101
107
.
11.
Harirchian
,
T.
, and
Garimella
,
S. V.
,
2009
, “
Effects of Channel Dimension, Heat Flux, and Mass Flux on Flow Boiling Regimes in Microchannels
,”
Int. J. Multiphase Flow
,
35
(
4
), pp.
349
362
.
12.
Kandlikar
,
S. G.
,
2004
, “
Heat Transfer Mechanisms During Flow Boiling in Microchannels
,”
ASME J. Heat Transfer
,
126
(
2
), pp.
8
16
.
13.
Kandlikar
,
S. G.
,
2002
, “
Two-Phase Flow Patterns, Pressure Drop, and Heat Transfer During Flow Boiling in Minichannel Flow Passages of Compact Evaporators
,”
Heat Transfer Eng.
,
23
(
1
), pp.
5
23
.
14.
Kosar
,
A.
,
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2005
, “
Boiling Heat Transfer in Rectangular Microchannels With Reentrant Cavities
,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
4867
4886
.
15.
Kandlikar
,
S. G.
,
2012
, “
History, Advances, and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review
,”
ASME J. Heat Transfer
,
134
(
3
), p.
034001
.
16.
Peles
,
Y.
,
2012
,
Contemporary Perspectives on Flow Boiling Instabilities in Microchannels and Minichannels
,
Begell House, Danbury, CT
.
17.
Kandlikar
,
S. G.
,
Colin
,
S.
,
Peles
,
Y.
,
Garimella
,
S.
,
Pease
,
R. F.
,
Brandner
,
J. J.
, and
Tuckerman
,
D. B.
,
2013
, “
Heat Transfer in Microchannels: 2012 Status and Research Needs
,”
ASME J. Heat Transfer
,
135
(
9
), p.
091001
.
18.
Bhavanani
,
S.
,
Barayanan
,
V.
,
Qu
,
W.
,
Jensen
,
M.
,
Kandlikar
,
S.
,
Kim
,
J.
, and
Thome
,
J.
,
2014
, “
Boiling Augmentation With Micro/Nanostructures Surfaces: Current Status and Research Outlook
,”
Nanoscale Microscale Thermophys. Eng.
,
18
(
3
), pp.
197
222
.
19.
Liu
,
D.
, and
Garimella
,
S. V.
,
2007
, “
Flow Boiling Heat Transfer in Microchannels
,”
ASME J. Heat Transfer
,
129
(
10
), pp.
1321
1332
.
20.
Kandlikar
,
S. G.
,
2013
, “
Controlling Bubble Motion Over Heated Surface Through Evaporation Momentum Force to Enhance Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
102
(
5
), p.
051611
.
21.
Patil
,
C. M.
, and
Kandlikar
,
S. G.
,
2014
, “
Pool Boiling Enhancement Through Microporous Coatings Selectively Electrodeposited on Fin Tops of Open Microchannels
,”
Int. J. Heat Mass Transfer
,
79
, pp.
816
828
.
22.
Hsu
,
Y. Y.
,
1962
, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,”
ASME J. Heat Transfer
,
84
(
3
), pp.
207
216
.
23.
Kandlikar
,
S. G.
,
2006
, “
Nucleation Characteristics and Stability Considerations During Flow Boiling in Microchannels
,”
Exp. Therm. Fluid Sci.
,
30
(
5
), pp.
441
447
.
24.
Kandlikar
,
S. G.
,
Willistein
,
D. A.
, and
Borrelli
,
J.
,
2005
, “
Experimental Evaluation of Pressure Drop Elements and Fabricated Nucleation Sites for Stabilizing Flow Boiling in Minichannels and Microchannels
,”
ASME
Paper No. ICMM2005-75197.
25.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
,
Willistein
,
D. A.
, and
Borrelli
,
J.
,
2006
, “
Stabilization of Flow Boiling in Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites
,”
ASME J. Heat Transfer
,
128
(
4
), pp.
389
396
.
26.
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2008
, “
Flow Boiling Instabilities in Microchannels and Means for Mitigation by Reentrant Cavities
,”
ASME J. Heat Transfer
,
130
(
7
), p.
072402
.
27.
Kosar
,
A.
,
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2006
, “
Suppression of Boiling Flow Oscillations in Parallel Microchannels by Inlet Restrictors
,”
ASME J. Heat Transfer
,
130
(7), p.
072402
.
28.
Krishnamurthy
,
S.
, and
Peles
,
Y.
,
2010
, “
Flow Boiling Heat Transfer in Micro Pin Fins Entrenched Microchannel
,”
ASME J. Heat Transfer
,
132
(
4
), p.
041007
.
29.
Kosar
,
A.
, and
Peles
,
Y.
,
2007
, “
Boiling Heat Transfer in a Hydrofoil-Based Micro Pin Fin Heat Sink
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
1018
1034
.
30.
Qu
,
W.
, and
Siu-Ho
,
A.
,
2009
, “
Experimental Study of Saturated Flow Boiling Heat Transfer in an Array of Staggered Micro-Pin-Fins
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
1853
1863
.
31.
Qu
,
W.
, and
Siu-Ho
,
A.
,
2009
, “
Measurement and Prediction of Pressure Drop in a Two-Phase Micro-Pin-Fin Heat Sink
,”
Int. J. Heat Mass Transfer
,
52
(
21
), pp.
5173
5184
.
32.
Kosar
,
A.
,
Ozdemir
,
M. R.
, and
Keskinoz
,
M.
,
2010
, “
Pressure Drop Across Micro-Pin Heat Sinks Under Unstable Boiling Conditions
,”
Int. J. Therm. Sci.
,
49
(
7
), pp.
1253
1263
.
33.
Law
,
M.
,
Lee
,
P. S.
, and
Balasubramanian
,
K.
,
2014
, “
Experimental Investigation of Flow Boiling Heat Transfer in Novel Oblique-Finned Microchannels
,”
Int. J. Heat Mass Transfer
,
76
, pp.
419
431
.
34.
Yao
,
Z.
,
Lu
,
Y.-W.
, and
Kandlikar
,
S. G.
,
2012
, “
Fabrication of Nanowires on Orthogonal Surfaces of Microchannels and Their Effect on Pool Boiling
,”
J. Micromech. Microeng.
,
22
(
11
), p.
115005
.
35.
Khanikar
,
V.
,
Mudawar
,
I.
, and
Fisher
,
T.
,
2009
, “
Effects of Carbon Nanotube Coating on Flow Boiling in a Microchannel
,”
Int. J. Heat Mass Transfer
,
52
(15–16), pp.
3805
3817
.
36.
Li
,
D.
,
Wu
,
G. S.
,
Wang
,
W.
,
Wang
,
Y. D.
,
Liu
,
D.
,
Zhang
,
D. C.
,
Chen
,
Y. F.
,
Peterson
,
G. P.
, and
Yang
,
R.
,
2012
, “
Enhancing Flow Boiling Heat Transfer in Microchannels for Thermal Management With Monolithically-Integrated Silicon Nanowires
,”
Nano Lett.
,
12
(
7
), pp.
3385
3390
.
37.
Morshed
,
A. K. M. M.
,
Yang
,
F.
,
Ali
,
M. Y.
,
Khan
,
J. A.
, and
Li
,
C.
,
2012
, “
Enhanced Flow Boiling in a Microchannel With Integration of Nanowires
,”
Appl. Therm. Eng.
,
32
, pp.
68
75
.
38.
Yang
,
F.
,
Dai
,
X.
,
Peles
,
Y.
,
Cheng
,
P.
,
Khan
,
J.
, and
Li
,
C.
,
2014
, “
Flow Boiling Phenomena in a Single Annular Flow Regime in Microchannels (I): Characterization of Flow Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
68
, pp.
703
715
.
39.
Yang
,
F.
,
Dai
,
X.
,
Peles
,
Y.
,
Cheng
,
P.
,
Khan
,
J.
, and
Li
,
C.
,
2014
, “
Flow Boiling Phenomena in a Single Annular Flow Regime in Microchannels (I): Reduced Pressure Drop and Enhanced Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
68
, pp.
716
724
.
40.
Inada
,
S.
,
Miyasaka
,
Y.
,
Sakamoto
,
S.
, and
Chandratilleke
,
G. R.
,
1986
, “
Liquid-Solid Contact State in Subcooled Pool Transition Boiling System
,”
ASME J. Heat Transfer
,
108
(
1
), pp.
219
221
.
41.
Suzuki
,
K.
,
Kokubu
,
T.
,
Nakano
,
M.
,
Kawamura
,
H.
,
Ueno
,
I.
,
Shida
,
H.
, and
Ogawa
,
O.
,
2005
, “
Enhancement of Heat Transfer in Subcooled Flow Boiling With Microbubble Emission
,”
Exp. Therm. Fluid Sci.
,
29
(
7
), pp.
827
832
.
42.
Tange
,
M.
,
Takagi
,
S.
,
Watanabe
,
M.
, and
Shoji
,
M.
,
2004
, “
Microbubble Emission Boiling in a Microchannel and Minichannel
,”
ASME
Paper No. ICMM2004-2385.
43.
Wang
,
G.
, and
Cheng
,
P.
,
2009
, “
Subcooled Flow Boiling and Microbubble Emission Boiling Phenomena in a Partially Heated Microchannel
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
79
91
.
44.
Das
,
S. K.
,
2006
, “
Heat Transfer in Nanofluids–A Review
,”
Heat Transfer Eng.
,
27
(
10
), pp.
3
19
.
45.
Wang
,
X.-Q.
, and
Majumdar
,
A. S.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
1
19
.
46.
Kakac
,
S.
, and
Pramuanjaroenkij
,
A.
,
2009
, “
Review of Convective Heat Transfer Enhancement With Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
(
12–14
), pp.
3187
3196
.
47.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
,
2003
, “
Pool Boiling Characteristics of Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
46
(
5
), pp.
851
862
.
48.
Kim
,
H. D.
,
Kim
,
J.
, and
Kim
,
M. H.
,
2007
, “
Experimental Studies on CHF Characteristics of Nano-Fluids at Pool Boiling
,”
Int. J. Multiphase Flow
,
33
(
7
), pp.
691
706
.
49.
Lee
,
J.
, and
Mudawar
,
I.
,
2007
, “
Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
50
(
3–4
), pp.
452
463
.
50.
Vafei
,
S.
, and
Wen
,
D.
,
2010
, “
Critical Heat Flux (CHF) of Subcooled Flow Boiling of Alumina Nanofluids in a Horizontal Microchannel
,”
ASME J. Heat Transfer
,
132
(
10
), p.
102404
.
51.
Kim
,
S. J.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L.-W.
,
2010
, “
Subcooled Flow Boiling Heat Transfer of Dilute Alumina, Zinc Oxide, and Diamond Nanofluids at Atmospheric Pressure
,”
Nucl. Eng. Des.
,
240
(
5
), pp.
1186
1194
.
52.
Edel
,
Z.
, and
Mukherjee
,
A.
,
2015
, “
Flow Boiling Dynamics of Water and Nanofluids in a Single Microchannel at Different Heat Fluxes
,”
ASME J. Heat Transfer
,
137
(
1
), p.
011501
.
53.
Xu
,
J.
,
Vaillant
,
R.
, and
Attinger
,
D.
,
2010
, “
Use of a Porous Membrane for Gas Bubble Removal in Microfluidic Channels: Physical Mechanisms and Design Criteria
,”
Microfluid. Nanofluid.
,
9
(4–5), pp.
765
772
.
54.
David
,
M. P.
,
Miler
,
J.
,
Steinebrenner
,
J. E.
,
Yang
,
Y.
,
Touzelbaev
,
M.
, and
Goodson
,
K. E.
,
2011
, “
Hydraulic and Thermal Characteristics of a Vapor Venting Two-Phase Microchannel Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5504
5516
.
55.
Fazeli
,
A.
,
Mortazavi
,
M.
, and
Moghaddam
,
S.
,
2015
, “
Hierarchical Biphilic Micro/Nanostructures for a New Generation Phase-Change Heat Sink
,”
Appl. Therm. Eng.
,
78
, pp.
380
386
.
56.
Moghaddam
,
S.
,
2014
, personal communication.
57.
Woodcock
,
C.
,
Houshmand
,
F.
,
Plawsky
,
J.
,
Izenson
,
M.
,
Hill
,
R.
,
Phillips
,
S.
, and
Peles
,
Y.
,
2014
, “
Piranha Pin-Fins (PPF): Voracious Boiling Heat Transfer by Vapor Venting From Microchannels–System Calibration and Single-Phase Fluid Dynamics
,”
14th IEEE
ITherm
Conference,
Orlando, FL
, May 27–30, pp.
282
289
.
58.
Peles
,
Y.
,
2014
, personal correspondence.
59.
Ohadi
,
M.
,
Choo
,
K.
, and
Cetegen
,
E.
,
2013
, “
Forced-Fed Microchannels for High Flux Cooling Applications
,”
Next Generation Microchannel Heat Exchangers
,
Springer
,
New York
, pp.
33
65
.
60.
Kaya
,
A.
,
Ozdemir
,
M. R.
, and
Kosar
,
A.
,
2013
, “
High Mass Flux Boiling and Critical Heat Flux in Microscale
,”
Int. J. Heat Mass Transfer
,
65
, pp.
70
78
.
61.
Sykes
,
D. M.
,
Cole
,
G. S.
,
Staples
,
D. A.
,
Kosar
,
A.
, and
Bergles
,
A. E.
,
2010
, “
Critical Heat Flux in Cooling Channels for Flow-Field Probes
,”
ASME
Paper No. IHTC14-23276.
62.
Balasubramanian
,
K.
,
Jagirdar
,
M.
,
Lee
,
P. S.
,
Teo
,
C. J.
, and
Chou
,
S. K.
,
2013
, “
Experimental Investigation of Flow Boiling Heat Transfer and Instabilities in Straight Microchannels
,”
Int. J. Heat Mass Transfer
,
66
, pp.
655
671
.
63.
Zhu
,
Y.
,
Antao
,
D. S.
,
Chu
,
K.-H.
,
Hendricks
,
T. J.
, and
Wang
,
E. N.
,
2014
, “
Enhanced Flow Boiling Heat Transfer in Microchannels With Structured Surfaces
,”
15th International Heat Transfer Conference
, Paper No. IHTC15-9508.
64.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2005
, “
Numerical Study of the Effect of Inlet Constriction on Bubble Growth During Flow Boiling in Microchannels
,”
ASME
Paper No. ICNMM2005-75143.
65.
Lu
,
C. T.
, and
Pan
,
C.
,
2011
, “
Convective Boiling in a Parallel Microchannel Heat Sink With a Diverging Cross Section and Artificial Nucleation Sites
,”
Exp. Therm. Fluid Sci.
,
35
(
5
), pp.
810
815
.
66.
Miner
,
M. J.
,
Phelan
,
P. E.
,
Odom
,
B. A.
, and
Ortiz
,
C. A.
,
2013
, “
Experimental Measurements of Critical Heat Flux in Expanding Microchannel Arrays
,”
ASME J. Heat Transfer
,
135
(
10
), p.
101501
.
67.
Miner
,
M. J.
,
Phelan
,
P. E.
,
Odom
,
B. A.
, and
Ortiz
,
C. A.
,
2013
, “
An Experimental Investigation of Pressure Drop in Expanding Microchannel Arrays
,”
ASME J. Heat Transfer
,
136
(
3
), p.
031502
.
68.
Balasubramanian
,
K.
,
Lee
,
P. S.
,
Jin
,
L. W.
,
Chou
,
S. K.
,
Teo
,
C. J.
, and
Gao
,
S.
,
2011
, “
Experimental Investigation of Flow Boiling Heat Transfer and Pressure Drop in Straight and Expanding Microchannels: A Comparative Study
,”
Int. J. Heat Mass Transfer
,
50
(
12
), pp.
2413
2421
.
69.
Balasubramanian
,
K.
,
Lee
,
P. S.
,
Teo
,
C. J.
, and
Chou
,
S. K.
,
2013
, “
Flow Boiling Heat Transfer and Pressure Drop in Stepped Fin Microchannels
,”
Int. J. Heat Mass Transfer
,
67
, pp.
234
252
.
70.
Kandlikar
,
S. G.
,
Widger
,
T.
,
Kalani
,
A.
, and
Mejia
,
V.
,
2013
, “
Enhanced Flow Boiling Over Open Microchannels With Uniform and Tapered Gap Microchannels
,”
ASME J. Heat Transfer
,
135
(
6
), p.
061401
.
71.
Kandlikar
,
S. G.
, “
Heat Transfer System and Method Incorporating Tapered Flow Field
,” U.S. Patent Pending, U.S. Application No. 20140262186.
72.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2014
, “
Evaluation of Pressure Drop Performance During Enhanced Flow Boiling in Open Microchannels With Tapered Manifolds
,”
ASME J. Heat Transfer
,
136
(
5
), p.
051502
.
73.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2015
, “
Flow Patterns and Heat Transfer Mechanisms During Flow Boiling Over Open Microchannels in Tapered Manifold (OMM)
,”
Int. J. Heat Mass Transfer
,
89
, pp.
494
504
.
74.
Kandlikar
,
S. G.
,
2010
, “
Scale Effects on Flow Boiling Heat Transfer in Microchannels: A Fundamental Perspective
,”
Int. J. Therm. Sci.
,
49
(
7
), pp.
1073
1085
.
75.
Patil
,
C. M.
, and
Kandlikar
,
S. G.
,
2014
, “
Review of the Manufacturing Techniques for Porous Surfaces Used in Enhanced Pool Boiling
,”
Heat Transfer Eng.
,
35
(
10
), pp.
887
902
.
76.
Kalani
,
A.
, and
Kandlikar
,
S. G.
, “
Heat Dissipation Beyond 1 kW/cm2 Under Flow Boiling With Low Pressure Drop and High Heat Transfer Coefficient
,” (unpublished).
You do not currently have access to this content.