In this paper, an analytical study is carried out on the heat transfer, pressure drop, and entropy generation in a flat-plate solar collector using SiO2/water nanofluid with volume concentration of 1%. In the study, the effects of two different values of pH, i.e., 5.8 and 6.5, and two different sizes of nanoparticles, i.e., 12 nm and 16 nm, on the entropy generation rate in turbulent flow are investigated. The results are compared with the results obtained for the case of water. The findings show that by using the Brinkman model to calculate the viscosity instead of experimental data one obtains a higher heat transfer coefficient and thermal efficiency than that in the case of water, while, when the experimental data are used, the heat transfer coefficient and thermal efficiency of water are found to be higher than that of nanofluids. The results reveal that using nanofluids increases the outlet temperature and reduces the entropy generation rate. It is also found that for nanofluids containing the particles with a size of 16 nm, the increase in pH value would increase the entropy generation rate, while for nanoparticles with a size of 12 nm the increase in pH would decrease the entropy generation.

References

1.
Saidur
,
R.
,
Leong
,
K. Y.
, and
Mohammad
,
H. A.
,
2011
, “
A Review on Applications and Challenges of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
15
(
3
), pp.
1646
1668
.10.1016/j.rser.2010.11.035
2.
Hung
,
T. C.
,
Yan
,
W. M.
,
Wang
,
X. D.
, and
Chang
,
C. Y.
,
2012
, “
Heat Transfer Enhancement in Microchannel Heat Sinks Using Nanofluids
,”
Int. J. Heat Mass Transfer
,
55
(
9–10
), pp.
2559
2570
.10.1016/j.ijheatmasstransfer.2012.01.004
3.
Ho
,
J. C.
,
Chen
,
W. C.
, and
Yan
,
W. M.
,
2014
, “
Correlations of Heat Transfer Effectiveness in a Minichannel Heat Sink With Water-Based Suspensions of Al2O3 Nanoparticles and/or MEPCM Particles
,”
Int. J. Heat Mass Transfer
,
69
, pp.
276
284
.10.1016/j.ijheatmasstransfer.2013.10.034
4.
Mahian
,
O.
,
Kianifar
,
A.
,
Kalogirou
,
S. A.
,
Pop
,
I.
, and
Wongwises
,
S.
,
2013
, “
A Review of the Applications of Nanofluids in Solar Energy
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
582
594
.10.1016/j.ijheatmasstransfer.2012.10.037
5.
Javadi
,
F. S.
,
Saidur
,
R.
, and
Kamalisarvestani
,
M.
,
2013
, “
Investigating Performance Improvement of Solar Collectors by Using Nanofluids
,”
Renewable Sustainable Energy Rev.
,
28
, pp.
232
245
.10.1016/j.rser.2013.06.053
6.
Tyagi
,
H.
,
Phelan
,
P.
, and
Prasher
,
R.
,
2009
, “
Predicted Efficiency of a Low-Temperature Nanofluid Based Direct Absorption Solar Collector
,”
ASME J. Sol. Energy Eng.
,
131
(
4
), p.
041004
.10.1115/1.3197562
7.
Yousefi
,
T.
,
Veysi
,
F.
,
Shojaeizadeh
,
E.
, and
Zinadini
,
S.
,
2012
, “
An Experimental Investigation on the Effect of Al2O3–H2O Nanofluid on the Efficiency of Flat-Plate Solar Collectors
,”
Renewable Energy
,
39
(
1
), pp.
293
298
.10.1016/j.renene.2011.08.056
8.
Yousefi
,
T.
,
Veysi
,
F.
,
Shojaeizadeh
,
E.
, and
Zinadini
,
S.
,
2012
, “
An Experimental Investigation on the Effect of MWCNT–H2O Nanofluid on the Efficiency of Flat-Plate Solar Collector
,”
Exp. Therm. Fluid Sci.
,
39
, pp.
207
212
.10.1016/j.expthermflusci.2012.01.025
9.
Yousefi
,
T.
,
Veysi
,
F.
,
Shojaeizadeh
,
E.
, and
Zinadini
,
S.
,
2012
, “
An Experimental Investigation on the Effect of pH Variation of MWCNT–H2O Nanofluid on the Efficiency of a Flat-Plate Solar Collector
,”
Sol. Energy
,
86
(
2
), pp.
771
779
.10.1016/j.solener.2011.12.003
10.
Khullar
,
V.
,
Tyagi
,
H.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Singh
,
H.
, and
Taylor
,
R. A.
,
2012
, “
Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector
,”
ASME J. Nanotechnol. Eng. Med.
,
3
(
3
), p.
031003
.10.1115/1.4007387
11.
Nasrin
,
R.
,
Alim
,
M. A.
, and
Chamkha
,
A. J.
,
2013
, “
Effects of Physical Parameters on Natural Convection in a Solar Collector Filled With Nanofluid
,”
Heat Transfer—Asian Research
,
42
(
1
), pp.
73
88
.10.1002/htj.21026
12.
Jamal-Abad
,
M. T.
,
Zamzamian
,
A.
,
Imani
,
E.
, and
Mansouri
,
M.
,
2013
, “
Experimental Study of the Performance of a Flat-Plate Collector Using Cu–Water Nanofluid
,”
J. Thermophys. Heat Transfer
,
27
(
4
), pp.
756
760
.10.2514/1.T4074
13.
Faizal
,
M.
,
Saidur
,
R.
,
Mekhilef
,
S.
, and
Alim
,
M. A.
,
2013
, “
Energy, Economic and Environmental Analysis of Metal Oxides Nanofluid for Flat-Plate Solar Collector
,”
Energy Conv. Manage.
,
76
, pp.
162
168
.10.1016/j.enconman.2013.07.038
14.
Faizal
,
M.
,
Saidur
,
R.
, and
Mekhilef
,
S.
,
2014
, “
Potential of Size Reduction of Flat-Plate Solar Collectors When Applying Al2O3 Nanofluid
,”
Adv. Mater. Res.
,
832
, pp.
149
153
.10.1088/1755-1315/16/1/012004
15.
Nasrin
,
R.
, and
Alim
,
M. A.
,
2014
, “
Modeling of a Solar Water Collector With Water-Based Nanofluid Using Nanoparticles
,”
Heat Transfer—Asian Research
,
43
(
3
), pp.
270
287
.10.1002/htj.21080
16.
Colangelo
,
G.
,
Favale
,
E.
,
de Risi
,
A.
, and
Laforgia
,
D.
,
2013
, “
A New Solution for Reduced Sedimentation Flat Panel Solar Thermal Collector Using Nanofluids
,”
Appl. Energy
,
111
, pp.
80
93
.10.1016/j.apenergy.2013.04.069
17.
Rahman
,
M. M.
,
Mojumder
,
S.
,
Saha
,
S.
,
Mekhilef
,
S.
, and
Saidur
,
R.
,
2014
, “
Augmentation of Natural Convection Heat Transfer in Triangular Shape Solar Collector by Utilizing Water Based Nanofluids Having a Corrugated Bottom Wall
,”
Int. Commun. Heat Mass Transfer
,
50
, pp.
117
127
.10.1016/j.icheatmasstransfer.2013.10.008
18.
Torabi
,
M.
, and
Zhang
,
K.
,
2014
, “
Classical Entropy Generation Analysis in Cooled Homogenous and Functionally Graded Material Slabs With Variation of Internal Heat Generation With Temperature, and Convective–Radiative Boundary Conditions
,”
Energy
,
65
, pp.
387
397
.10.1016/j.energy.2013.11.020
19.
Aziz
,
A.
, and
Torabi
,
M.
,
2013
, “
Transient Response and Entropy Generation Minimisation of a Finite Size Radiation Heat Shield With Finite Heat Capacity and Temperature-Dependent Emissivities
,”
Int. J. Exergy
,
12
(
1
), pp.
87
108
.10.1504/IJEX.2013.052545
20.
Torabi
,
M.
, and
Aziz
,
A.
,
2012
, “
Entropy Generation in a Hollow Cylinder With Temperature Dependent Thermal Conductivity and Internal Heat Generation With Convective–Radiative Surface Cooling
,”
Int. Commun. Heat Mass Transfer
,
39
(
10
), pp.
1487
1495
.10.1016/j.icheatmasstransfer.2012.10.009
21.
Parvin
,
S.
,
Nasrin
,
R.
, and
Alim
,
M. A.
,
2014
, “
Heat Transfer and Entropy Generation Through Nanofluid Filled Direct Absorption Solar Collector
,”
Int. J. Heat Mass Transfer
,
71
, pp.
386
395
.10.1016/j.ijheatmasstransfer.2013.12.043
22.
Alim
,
M. A.
,
Abdin
,
Z.
,
Saidur
,
R.
,
Hepbasli
,
A.
,
Khairul
,
M. A.
, and
Rahim
,
N. A.
,
2013
, “
Analyses of Entropy Generation and Pressure Drop for a Conventional Flat Plate Solar Collector Using Different Types of Metal Oxide Nanofluids
,”
Energy Build.
,
66
, pp.
289
296
.10.1016/j.enbuild.2013.07.027
23.
Bejan
,
A.
,
1996
,
Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes
, Vol.
2
,
CRC Press
,
Boca Raton, FL
.
24.
Mahian
,
O.
,
Kianifar
,
A.
,
Sahin
,
A. Z.
, and
Wongwises
,
S.
,
2014
, “
Entropy Generation During Al2O3/Water Nanofluid Flow in a Solar Collector: Effects of Tube Roughness, Nanoparticle Size, and Different Thermophysical Models
,”
Int. J. Heat Mass Transfer
,
78
, pp.
64
75
.10.1016/j.ijheatmasstransfer.2014.06.051
25.
Vajjha
,
R. S.
,
Das
,
D. K.
, and
Kulkarni
,
D. P.
,
2010
, “
Development of New Correlations for Convective Heat Transfer and Friction Factor in Turbulent Regime for Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4607
4618
.10.1016/j.ijheatmasstransfer.2010.06.032
26.
Xuan
,
Y.
,
Li
,
Q.
, and
Hu
,
W.
,
2003
, “
Aggregation Structure and Thermal Conductivity of Nanofluids
,”
AIChE J.
,
49
(
4
), pp.
1038
1043
.10.1002/aic.690490420
27.
Khanafer
,
K.
, and
Vafai
,
K.
,
2011
, “
A Critical Synthesis of Thermophysical Characteristics of Nanofluids
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4410
4428
.10.1016/j.ijheatmasstransfer.2011.04.048
28.
Maxwell
,
J. C. A.
,
1881
,
Treatise on Electricity and Magnetism
, 2nd ed.,
Clarendon Press
,
Oxford, UK
.
29.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
(
4
), p.
571
.10.1063/1.1700493
30.
Fei
,
Z. J.
,
Yang
,
L. Z.
,
Jiang
,
N. M.
, and
Fa
,
C. K.
,
2009
, “
Dependence of Nanofluid Viscosity on Particle Size and pH Value
,”
Chin. Phys. Lett.
,
26
, p.
066202
.10.1088/0256-307X/26/6/066202
31.
Bejan
,
A.
,
1982
,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
New York
.
32.
Farahat
,
S.
,
Sarhaddi
,
F.
, and
Ajam
,
H.
,
2009
, “
Exergetic Optimization of Flat Plate Solar Collectors
,”
Renewable Energy
,
34
(
4
), pp.
1169
1174
.10.1016/j.renene.2008.06.014
33.
Suzuki
,
A.
,
1988
, “
General Theory of Exergy Balance Analysis and Application to Solar Collectors
,”
Energy
,
13
(
2
), pp.
153
160
.10.1016/0360-5442(88)90040-0
34.
Suzuki
,
A.
,
1988
, “
A Fundamental Equation for Exergy Balance on Solar Collectors
,”
ASME J. Sol. Energy Eng.
,
110
(
2
), pp.
102
106
.10.1115/1.3268238
35.
Dutta Gupta
,
K. K.
, and
Saha
,
S. K.
,
1990
, “
Energy Analysis of Solar Thermal Collectors
,”
Renewable Energy and Environment
,
Himanshu Publications
,
New Delhi, India
, pp.
283
287
.
36.
Kalogirou
,
S. A.
,
2013
,
Solar Energy Engineering: Processes and Systems
, 2nd ed.,
Elsevier
,
Oxford, UK
.
37.
Incropera
,
F. P.
, and
De Witt
,
D. P.
,
1996
,
Fundamentals of Heat and Mass Transfer
, 4th ed.,
Wiley
,
New York
.
38.
Çengel
,
Y. A.
, and
Cimbala
,
J. M.
,
2009
,
Fluid Mechanics: Fundamentals and Applications
, 2nd ed.,
McGraw-Hill Higher Education
, New York.
You do not currently have access to this content.