An experimental and numerical investigation on natural convection heat transfer of TiO2–water nanofluids in a square enclosure was carried out for the present work. TiO2–water nanofluids with different nanoparticle mass fractions were prepared for the experiment and physical properties of the nanofluids including thermal conductivity and viscosity were measured. Results show that both thermal conductivity and viscosity increase when increasing the mass fraction of TiO2 nanoparticles. In addition, the thermal conductivity of nanofluids increases, while the viscosity of nanofluids decreases with increasing the temperature. Nusselt numbers under different Rayleigh numbers were obtained from experimental data. Experimental results show that natural convection heat transfer of nanofluids is no better than water and even worse when the Rayleigh number is low. Numerical studies are carried out by a Lattice Boltzmann model (LBM) coupling the density and the temperature distribution functions to simulate the convection heat transfer in the enclosure. The experimental and numerical results are compared with each other finding a good match in this investigation, and the results indicate that natural convection heat transfer of TiO2–water nanofluids is more sensitive to viscosity than to thermal conductivity.

References

1.
Xuan
,
Y.
, and
Li
,
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
,
125
, pp.
151
155
.10.1115/1.1532008
2.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
,
125
, pp.
567
574
.10.1115/1.1571080
3.
Williams
,
W.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2008
, “
Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes
,”
ASME J. Heat Transfer
,
130
, p.
042412
.10.1115/1.2818775
4.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
, pp.
240
250
.10.1115/1.2150834
5.
Choi
,
S. U. S.
, and
Eastman
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME FED
,
231
, pp.
99
103
.
6.
Yang
,
X.
, and
Liu
,
Z.
,
2010
, “
A Kind of Nanofluid Consisting of Surface-Functionalized Nanoparticles
,”
Nanoscale Res. Lett.
,
5
, pp.
1324
1328
.10.1007/s11671-010-9646-6
7.
Zhu
,
H. T.
,
Lin
,
Y. S.
, and
Yin
,
Y. S.
,
2004
, “
A Novel One-Step Chemical Method for Preparation of Copper Nanofluids
,”
J. Colloid Interface Sci.
,
277
(
1
), pp.
100
103
.10.1016/j.jcis.2004.04.026
8.
Huang
,
W.
, and
Wang
,
X.
,
2008
, “
Preparation and Properties of ε-Fe3N-Based Magnetic Fluid
,”
Nanoscale Res. Lett.
,
3
, pp.
260
264
.10.1007/s11671-008-9148-y
9.
Guo
,
S. Z.
,
Li
,
Y.
,
Jiang
,
J. S.
,
Xie
,
H. Q.
,
2010
, “
Nanofluids Containing γ-Fe2O3 Nanoparticles and Their Heat Transfer Enhancements
,”
Nanoscale Res Lett.
,
5
, pp.
1222
1227
.10.1007/s11671-010-9630-1
10.
Kim
,
S. H.
,
Choi
,
S. R.
, and
Kim
,
D.
,
2007
, “
Thermal Conductivity of Metal-Oxide Nanofluids: Particle Size Dependence and Effect of Laser Irradiation
,”
ASME J. Heat Transfer
,
129
, pp.
298
307
.10.1115/1.2427071
11.
Nnanna
,
A. G. A.
,
2007
, “
Experimental Model of Temperature-Driven Nanofluid
,”
ASME J. Heat Transfer
,
129
, pp.
697
704
.10.1115/1.2717239
12.
Teng
,
T. P.
,
Hsung
,
Y. H.
,
Teng
,
T. C.
,
Mo
,
H. E.
, and
Hsu
,
H. G.
,
2010
, “
The Effect of Alumina/Water Nanofluid Particle Size on Thermal Conductivity
,”
Appl. Therm. Eng.
,
30
, pp.
2213
2218
.10.1016/j.applthermaleng.2010.05.036
13.
Ding
,
Y.
,
Alias
,
H.
,
Wen
,
D.
, and
Williams
,
R. A.
,
2006
, “
Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)
,”
Int. J. Heat Mass Transfer
,
49
, pp.
240
250
.10.1016/j.ijheatmasstransfer.2005.07.009
14.
Jou
,
R. Y.
, and
Tzeng
,
S. C.
,
2006
, “
Numerical Research of Nature Convective Heat Transfer Enhancement Filled With Nanofluids in Rectangular Enclosures
,”
Int. Commun. Heat Mass Transfer
,
33
, pp.
727
736
.10.1016/j.icheatmasstransfer.2006.02.016
15.
Ho
,
C. J.
,
Liu
,
W. K.
,
Chang
,
Y. S.
, and
Lin
,
C. C.
,
2010
, “
Natural Convection Heat Transfer of Alumina-Water Nanofluid in Vertical Square Enclosures: An Experimental Study
,”
Int. J. Therm. Sci.
,
49
, pp.
1345
1353
.10.1016/j.ijthermalsci.2010.02.013
16.
Corcione
,
M.
,
Cianfrini
,
M.
,
Habib
,
E.
, and
Quintino
,
A.
,
2012
, “
Optimization of Free Convection Heat Transfer From Vertical Plates Using Nanofluids
,”
ASME J. Heat Transfer
,
134
(
4
), p.
042501
.10.1115/1.4005108
17.
Venerus
,
D.
,
Buongiorno
,
J.
,
Christianson
,
R.
,
Townsend
,
J.
,
Bang
, I
. C.
,
Chen
,
G.
,
Chung
,
S. J.
,
Chyu
,
M.
,
Chen
,
H.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Hong
,
H.
,
Horton
,
M.
,
Hu
,
L. W.
,
Iorio
,
C. S.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Kabelac
,
S.
,
Kedzierski
,
M. A.
,
Kim
,
C.
,
Kim
,
J. H.
,
Kim
,
S.
,
McKrell
,
T.
,
Ni
,
R.
,
Philip
,
J.
,
Prabhat
,
N.
,
Song
,
P.
,
Vaerenbergh
,
S. V.
,
Wen
,
D.
,
Witharana
,
S.
,
Zhao
,
X.
, and
Zhou
,
S.
,
2010
, “
Viscosity Measurements on Colloidal Dispersions (Nanofluids) for Heat Transfer Application
,”
Appl. Rheol.
,
20
(
4
), p.
44582
.10.3933/ApplRheol-20-44582
18.
Sergio
,
B.
,
Laura
,
F.
,
Anna
,
B.
,
Laura
,
C.
,
Monica
,
F.
,
Cesare
,
P.
, and
Simona
,
B.
,
2012
, “
Viscosity of Water Based SWCNH and TiO2 Nanofluids
,”
Exp. Therm. Fluid Sci.
,
36
, pp.
65
71
.10.1016/j.expthermflusci.2011.08.004
19.
Ghasemi
,
B.
, and
Aminossadati
,
S. M.
,
2009
, “
Natural Convection Heat Transfer in an Inclined Enclosure Filled With a Water-CuO Nanofluid
,”
Numer. Heat Transfer A
,
55
, pp.
807
823
.10.1080/10407780902864623
20.
Tiwari
,
R. K.
, and
Das
,
M. K.
,
2007
, “
Heat Transfer Augmentation in a Two-Sided Lid-Driven Differentially Heated Square Cavity Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
50
, pp.
2002
2018
.10.1016/j.ijheatmasstransfer.2006.09.034
21.
Abu-Nada
,
E.
,
2010
, “
Effects of Variable Viscosity and Thermal Conductivity of CuO-Water Nanofluid on Heat Transfer Enhancement in Natural Convection: Mathematical Model and Simulation
,”
ASME J. Heat Transfer
,
132
(
5
), pp.
1
9
.10.1115/1.4000440
22.
Bianco
, V
.
,
Chiacchio
,
F.
,
Manca
,
O.
, and
Nardini
,
S.
,
2009
, “
Numerical Investigation of Nanofluids Forced Convection in Circular Tubes
,”
Appl. Therm. Eng.
,
29
, pp.
3632
3642
.10.1016/j.applthermaleng.2009.06.019
23.
Polidori
,
G.
,
Fohanno
,
S.
, and
Nguyen
,
C. T.
,
2007
, “
A Note on Heat Transfer Modelling of Newtonian Nanofluidsin Laminar Free Convection
,”
Int. J. Therm. Sci.
,
46
, pp.
739
744
.10.1016/j.ijthermalsci.2006.11.009
24.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2010
, “
The Onset of Convection in a Horizontal Nanofluid Layer of Finite Depth
,”
Eur. J. Mech. B/Fluids
,
29
, pp.
217
223
.10.1016/j.euromechflu.2010.02.003
25.
Santra
,
A. K.
,
Sen
,
S.
, and
Chakraborty
,
N.
,
2008
, “
Study of Heat Transfer Augmentation in a Differentially Heated Square Cavity Using Copper-Water Nanofluid
,”
Int. J. Therm. Sci.
,
47
, pp.
1113
1122
.10.1016/j.ijthermalsci.2007.10.005
26.
Kleinstreuer
,
C.
, and
Feng
,
Y.
,
2012
, “
Thermal Nanofluid Property Model With Application to Nanofluid Flow in a Parallel-Disk System—Part I: A New Thermal Conductivity Model for Nanofluid Flow
,”
ASME J. Heat Transfer
,
134
(
5
), p.
051002
.10.1115/1.4005632
27.
Feng
,
Y.
, and
Kleinstreuer
,
C.
,
2012
, “
Thermal Nanofluid Property Model With Application to Nanofluid Flow in a Parallel Disk System—Part II: Nanofluid Flow Between Parallel Disks
,”
ASME J. Heat Transfer
,
134
(
5
), p.
051003
.10.1115/1.4005633
28.
He
,
X. Y.
, and
Luo
,
L. S.
,
1997
, “
Theory of the Lattice Boltzmann Method: From the Boltzmann Equation to the Lattice Boltzmann Equation
,”
Phys. Rev. E
,
56
(
6
), pp.
6811
6817
.10.1103/PhysRevE.56.6811
29.
Xuan
,
Y. M.
, and
Yao
,
Z. P.
,
2005
, “
Lattice Boltzmann Model for nanofluids
,”
Heat Mass Transfer
,
41
, pp.
199
205
.10.1007/s00231-004-0539-z
30.
Kefayati
,
G. H. R.
,
Hosseinizadeh
,
S. F.
,
Gorji
,
M.
, and
Sajjadi
,
H.
,
2011
, “
Lattice Boltzmann Simulation of Natural Convection in Tall Enclosures Using Water/SiO2 Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
38
, pp.
798
805
.10.1016/j.icheatmasstransfer.2011.03.005
31.
Fattahi
,
E.
,
Farhadi
,
M.
,
Sedighi
,
K.
, and
Nemati
,
H.
,
2012
, “
Lattice Boltzmann Simulation of Natural Convection Heat Transfer in Nanofluids
,”
Int. J. Therm. Sci.
,
52
, pp.
137
144
.10.1016/j.ijthermalsci.2011.09.001
32.
Qian
,
H.
,
D'humières
,
D.
, and
Lallemand
,
P.
,
1992
, “
Lattice BGK Models for Navier-Stokes Equation
,”
Europhys. Lett.
,
17
(
6
), pp.
479
484
.10.1209/0295-5075/17/6/001
33.
Maxwell
,
J. C.
,
1904
,
A Treatise on Electricity and Magnetism
, 2nd ed.,
Oxford University Press
,
Cambridge, UK
.
34.
Hortman
,
M.
, and
Peric
,
M.
,
1990
, “
Finite Volume Multigrid Prediction of Laminar Natural Convection: Benchmark Solutions
,”
Int. J. Numer. Methods Fluids
,
11
(
2
), pp.
189
207
.10.1002/fld.1650110206
35.
Li
,
Q.
,
He
,
Y. L.
,
Wang
,
Y.
, and
Tang
,
G. H.
,
2008
, “
An Improved Thermal Lattice Boltzmann Model for Flows Without Viscous Heat Dissipation and Compression Work
,”
Int. J. Modern Phys. C
,
19
(
1
), pp.
125
150
.10.1142/S0129183108011978
36.
Cioni
,
S.
,
Ciliberto
,
S.
, and
Sommeria
,
J.
,
1996
, “
Experimental Study of High-Rayleigh-Number Convection in Mercury and Water
,”
Dyn. Atmos. Oceans
,
24
(
1-4
), pp.
117
127
.10.1016/0377-0265(95)00453-X
You do not currently have access to this content.