Abstract

Additive manufacturing enables highly efficient cooling fabrications such as triply periodic minimal surface (TPMS), which provides excellent heat transfer per unit volume. In a wedge-shaped channel representing trailing edge turbine blade cooling, conventional pin fins are replaced with different TPMS structures due to their topological features to enhance the flow mixing and heat transfer, strengthen the structural integrity, and reduce the manufacturing material. The turbulent flow and heat transfer characteristics of solid- and sheet-based TPMS models, including gyroid, diamond, and Schoen-I-graph and wrapped package (IWP), are numerically investigated. The heat transfer, pressure loss, and thermal performance are compared at Reynolds numbers of 10,000–30,000. Notably, among the studied TPMS structures, the diamond-sheet structure is selected as the optimal model. Compared to the baseline pin fin structure at an equal Reynolds number, it remarkably increases the overall heat transfer by up to 163.2%, the pressure loss by 181.8%, and the thermal performance by up to 77.3%. The numerical results indicate that the gyroid- and diamond-sheet structures effectively organize and interact with the cooling fluid, reducing low-velocity recirculation flow in the tip region of the trailing edge. The flow in the diamond-sheet network is distributed more evenly from the root to the tip region, improving the temperature uniformity throughout the channel. Overall, the diamond-sheet TPMS structure could effectively improve the heat transfer performance, temperature uniformity, and structural integrity in the turbine blades' trailing edge, thereby potentially extending the durability of the turbine blades.

References

1.
Ligrani
,
P.
,
2013
, “
Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines
,”
Int. J. Rotating Mach.
,
2013
, pp.
1
32
.10.1155/2013/275653
2.
Yeranee
,
K.
, and
Rao
,
Y.
,
2021
, “
A Review of Recent Studies on Rotating Internal Cooling for Gas Turbine Blades
,”
Chin. J. Aeronaut.
,
34
(
7
), pp.
85
113
.10.1016/j.cja.2020.12.035
3.
Du
,
W.
,
Luo
,
L.
,
Jiao
,
Y.
,
Wang
,
S.
,
Li
,
X.
, and
Sunden
,
B.
,
2021
, “
Heat Transfer in the Trailing Region of Gas Turbines – A State-of-the-Art Review
,”
Appl. Therm. Eng.
,
199
, p.
117614
.10.1016/j.applthermaleng.2021.117614
4.
Liang
,
G.
,
Islam
,
M. D.
,
Kharoua
,
N.
, and
Simmons
,
R.
,
2018
, “
Numerical Study of Heat Transfer and Flow Behavior in a Circular Tube Fitted With Varying Arrays of Winglet Vortex Generators
,”
Int. J. Therm. Sci.
,
134
, pp.
54
65
.10.1016/j.ijthermalsci.2018.08.004
5.
Xu
,
Y.
,
Islam
,
M. D.
, and
Kharoua
,
N.
,
2018
, “
Experimental Study of Thermal Performance and Flow Behaviour With Winglet Vortex Generators in a Circular Tube
,”
Appl. Therm. Eng.
,
135
, pp.
257
268
.10.1016/j.applthermaleng.2018.01.112
6.
Xu
,
Y.
,
Islam
,
M. D.
, and
Kharoua
,
N.
,
2017
, “
Numerical Study of Winglets Vortex Generator Effects on Thermal Performance in a Circular Pipe
,”
Int. J. Therm. Sci.
,
112
, pp.
304
317
.10.1016/j.ijthermalsci.2016.10.015
7.
Li
,
Y.
,
Rao
,
Y.
,
Wang
,
D.
,
Zhang
,
P.
, and
Wu
,
X.
,
2019
, “
Heat Transfer and Pressure Loss of Turbulent Flow in Channels With Miniature Structured Ribs on One Wall
,”
Int. J. Heat Mass Transfer
,
131
(
7
), pp.
584
593
.10.1016/j.ijheatmasstransfer.2018.11.067
8.
Rao
,
Y.
,
Feng
,
Y.
,
Li
,
B.
, and
Weigand
,
B.
,
2015
, “
Experimental and Numerical Study of Heat Transfer and Flow Friction in Channels With Dimples of Different Shapes
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
137
(
3)
, p.
031901
.10.1115/1.4029036
9.
Liang
,
C.
, and
Rao
,
Y.
,
2020
, “
Computational Analysis of Rotating Effects on Heat Transfer and Pressure Loss of Turbulent Flow in Detached Pin Fin Arrays With Various Clearances
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
12)
, p.
121803
.10.1115/1.4048476
10.
Rao
,
Y.
,
Wan
,
C.
, and
Xu
,
Y.
,
2012
, “
An Experimental Study of Pressure Loss and Heat Transfer in the Pin Fin-Dimple Channels With Various Dimple Depths
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6723
6733
.10.1016/j.ijheatmasstransfer.2012.06.081
11.
Du
,
W.
,
Luo
,
L.
,
Wang
,
S.
,
Liu
,
J.
, and
Sunden
,
B.
,
2019
, “
Effect of the Broken Rib Locations on the Heat Transfer and Fluid Flow in a Rotating Latticework Duct
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
10
), p.
102102
.10.1115/1.4044247
12.
Rao
,
Y.
, and
Zang
,
S.
,
2014
, “
Flow and Heat Transfer Characteristics in Latticework Cooling Channels With Dimple Vortex Generators
,”
ASME J. Turbomach.
,
136
(
2
), p.
021017
.10.1115/1.4025197
13.
Cunha
,
F. J.
, and
Chyu
,
M. K.
,
2006
, “
Trailing-Edge Cooling for Gas Turbines
,”
J. Propuls. Power
,
22
(
2
), pp.
286
300
.10.2514/1.20898
14.
Bianchini
,
C.
,
Facchini
,
B.
,
Simonetti
,
F.
,
Tarchi
,
L.
, and
Zecchi
,
S.
,
2011
, “
Numerical and Experimental Investigation of Turning Flow Effects on Innovative Pin Fin Arrangements for Trailing Edge Cooling Configurations
,”
ASME J. Turbomach.
,
134
(
2
), pp.
593
604
.10.1115/1.4003230
15.
Liang
,
C.
,
Rao
,
Y.
,
Chen
,
J.
, and
Zhang
,
P.
,
2022
, “
Experimental and Numerical Study of the Turbulent Flow and Heat Transfer in a Wedge-Shaped Channel With Guiding Pin Fin Arrays Under Rotating Conditions
,”
ASME J. Turbomach.
,
144
(
7
), p.
071007
.10.1115/1.4053488
16.
Liang
,
C.
,
Rao
,
Y.
,
Luo
,
J.
, and
Luo
,
X.
,
2021
, “
Experimental and Numerical Study of Turbulent Flow and Heat Transfer in a Wedge-Shaped Channel With Guiding Pin Fins for Turbine Blade Trailing Edge Cooling
,”
Int. J. Heat Mass Transfer
,
178
, p.
121590
.10.1016/j.ijheatmasstransfer.2021.121590
17.
Shen
,
B.
,
Li
,
Y.
,
Yan
,
H.
,
Boetcher
,
S. K. S.
, and
Xie
,
G.
,
2019
, “
Heat Transfer Enhancement of Wedge-Shaped Channels by Replacing Pin Fins With Kagome Lattice Structures
,”
Int. J. Heat Mass Transfer
,
141
, pp.
88
101
.10.1016/j.ijheatmasstransfer.2019.06.059
18.
Jin
,
M.
,
Feng
,
Q.
,
Fan
,
X.
,
Luo
,
Z.
,
Tang
,
Q.
,
Song
,
J.
,
Ma
,
S.
,
Nie
,
Y.
,
Jin
,
P.
, and
Zhao
,
M.
,
2022
, “
Investigation on the Mechanical Properties of TPMS Porous Structures Fabricated by Laser Powder Bed Fusion
,”
J. Manuf. Process.
,
76
, pp.
559
574
.10.1016/j.jmapro.2022.02.035
19.
Raja
,
A.
,
Mythreyi
,
O. V.
, and
Jayaganthan
,
R.
,
2020
, “
Additive Manufacturing of Nickel-Based Super Alloys for Aero Engine Applications
,”
Additive Manufacturing Applications for Metals and Composites
,
IGI Global
,
Hershey PA
, pp.
48
70
.10.4018/978-1-7998-4054-1.ch003
20.
Pires
,
T.
,
Santos
,
J.
,
Ruben
,
R. B.
,
Gouveia
,
B. P.
,
Castro
,
A. P. G.
, and
Fernandes
,
P. R.
,
2021
, “
Numerical-Experimental Analysis of the Permeability-Porosity Relationship in Triply Periodic Minimal Surfaces Scaffolds
,”
J. Biomech.
,
117
, p.
110263
.10.1016/j.jbiomech.2021.110263
21.
Ali
,
D.
,
Ozalp
,
M.
,
Blanquer
,
S. B. G.
, and
Onel
,
S.
,
2020
, “
Permeability and Fluid Flow-Induced Wall Shear Stress in Bone Scaffolds With TPMS and Lattice Architectures: A CFD Analysis
,”
Eur. J. Mech. B/Fluids
,
79
, pp.
376
385
.10.1016/j.euromechflu.2019.09.015
22.
Yeranee
,
K.
, and
Rao
,
Y.
,
2022
, “
A Review of Recent Investigations on Flow and Heat Transfer Enhancement in Cooling Channels Embedded With Triply Periodic Minimal Surfaces (TPMS)
,”
Energies
,
15
(
23
), p.
8994
.10.3390/en15238994
23.
Kaur
,
I.
, and
Singh
,
P.
,
2021
, “
Flow and Thermal Transport Characteristics of Triply-Periodic Minimal Surface (TPMS)-Based Gyroid and Schwarz-P Cellular Materials
,”
Numer. Heat Transfer Part A Appl.
,
79
(
8
), pp.
553
569
.10.1080/10407782.2021.1872260
24.
Khalil
,
M.
,
Hassan Ali
,
M. I.
,
Khan
,
K. A.
, and
Abu Al-Rub
,
R.
,
2022
, “
Forced Convection Heat Transfer in Heat Sinks With Topologies Based on Triply Periodic Minimal Surfaces
,”
Case Stud. Therm. Eng.
,
38
, p.
102313
.10.1016/j.csite.2022.102313
25.
Yinzheng
,
Z.
,
2019
, “
Numerical Analysis on Fluid-Solid Coupling Cooling of Minimal Surface Lattice Structure
,”
J. Phys. Conf. Ser.
,
1187
(
3
), p.
032070
.10.1088/1742-6596/1187/3/032070
26.
Femmer
,
T.
,
Kuehne
,
A. J. C.
, and
Wessling
,
M.
,
2015
, “
Estimation of the Structure Dependent Performance of 3-D Rapid Prototyped Membranes
,”
Chem. Eng. J.
,
273
, pp.
438
445
.10.1016/j.cej.2015.03.029
27.
Li
,
W.
,
Yu
,
G.
, and
Yu
,
Z.
,
2020
, “
Bioinspired Heat Exchangers Based on Triply Periodic Minimal Surfaces for Supercritical CO2 Cycles
,”
Appl. Therm. Eng.
,
179
, p.
115686
.10.1016/j.applthermaleng.2020.115686
28.
Al-Ketan
,
O.
,
Ali
,
M.
,
Khalil
,
M.
,
Rowshan
,
R.
,
Khan
,
K. A.
, and
Abu Al-Rub
,
R. K.
,
2021
, “
Forced Convection Computational Fluid Dynamics Analysis of Architected and Three-Dimensional Printable Heat Sinks Based on Triply Periodic Minimal Surfaces
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
2
), p.
021010
.10.1115/1.4047385
29.
Al‐Ketan
,
O.
, and
Abu Al‐Rub
,
R. K.
,
2021
, “
MSLattice: A Free Software for Generating Uniform and Graded Lattices Based on Triply Periodic Minimal Surfaces
,”
Mater. Des. Process. Commun.
,
3
(
6)
, p.
e205
.10.1002/mdp2.205
30.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
You do not currently have access to this content.