Abstract

Two-phase flat-shaped thermosyphons have been studied to optimize their thermal performance and reduce the hot spot temperature. A two-dimensional model was employed to observe the evaporation and condensation process in the thermosyphon. Simulating the phase change process was achieved through an in-house user-defined function (UDF), which obtains mass and energy source terms, added to ansysfluent code. Utilizing 1-Buthanol aqueous solution instead of water as the working fluid induces a Marangoni flow to a hotter region and prevents the dry-out phenomenon in the evaporator section. Also, employing a super hydrophilic evaporator makes the liquid spread on the evaporator more evenly, and hinders drying out. Using a super hydrophobic condenser accelerates the detachment of the condensed liquid from the condenser and reduces the accumulation of liquid on the condenser. Furthermore, it accelerates the return of the liquid to the evaporator section to recharge the liquid and prevent the dry-out phenomenon. It has been observed that by using the 1-Buthaol solution, the condensed liquid is more likely to fall back on the center part of the evaporator, which has the highest temperature. Altering the working fluid to 1-Buthanol aqueous solution yields a temperature drop of 10 K for the maximum temperature for a 100 W heat input. The temperature drop increased to 39 K by utilizing a super hydrophobic condenser and super hydrophilic evaporator instead of a bare copper. It has been observed that increasing the filling ratio in the thermosyphon increases the thermal inertia and reduces the hot spot temperature.

References

1.
Tavakkoli
,
F.
,
Ebrahimi
,
S.
,
Wang
,
S.
, and
Vafai
,
K.
,
2016
, “
Thermophysical and Geometrical Effects on the Thermal Performance and Optimization of a Three-Dimensional Integrated Circuit
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
8
), p.
082101
.10.1115/1.4033138
2.
Tavakkoli
,
F.
,
Ebrahimi
,
S.
,
Wang
,
S.
, and
Vafai
,
K.
,
2016
, “
Analysis of Critical Thermal Issues in 3D Integrated Circuits
,”
Int. J. Heat Mass Transfer
,
97
, pp.
337
352
.10.1016/j.ijheatmasstransfer.2016.02.010
3.
Wang
,
C.
,
Huang
,
X. J.
, and
Vafai
,
K.
,
2021
, “
Analysis of Hotspots and Cooling Strategy for Multilayer Three-Dimensional Integrated Circuits
,”
Appl. Therm. Eng.
,
186
, p.
116336
.10.1016/j.applthermaleng.2020.116336
4.
Lu
,
S.
, and
Vafai
,
K.
,
2022
, “
Thermal Performance Optimization of the 3D ICs Employing the Integrated Chip-Size Double-Layer or Multi-Layer Microchannels
,”
ASME J. Heat Transfer-Trans. ASME
(accepted).10.1115/1.4055245
5.
Tavakoli
,
A.
, and
Vafai
,
K.
,
2021
, “
Design and Optimization of a Composite Heat Spreader to Improve the Thermal Management of a Three-Dimensional Integrated Circuit
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
10
), p.
102901
.10.1115/1.4050922
6.
Tavakoli
,
A.
,
Salimpour
,
M. R.
, and
Vafai
,
K.
,
2021
, “
Geometrical Optimization of Boron Arsenide Inserts Embedded in a Heat Spreader to Improve Its Cooling Performance for Three Dimensional Integrated Circuits
,”
Numer. Heat Transfer A Appl.
,
80
(
8
), pp.
389
410
.10.1080/10407782.2021.1947626
7.
Bianco
,
V.
,
de Rosa
,
M.
, and
Vafai
,
K.
,
2022
, “
Phase-Change Materials for Thermal Management of Electronic Devices
,”
Appl. Therm. Eng.
,
214
, p.
118839
.10.1016/j.applthermaleng.2022.118839
8.
Savino
,
R.
,
de Cristofaro
,
D.
, and
Cecere
,
A.
,
2017
, “
Flow Visualization and Analysis of Self-Rewetting Fluids in a Model Heat Pipe
,”
Int. J. Heat Mass Transfer
,
115
, pp.
581
591
.10.1016/j.ijheatmasstransfer.2017.07.090
9.
Savino
,
R.
,
Cecere
,
A.
, and
di Paola
,
R.
,
2009
, “
Surface Tension-Driven Flow in Wickless Heat Pipes With Self-Rewetting Fluids
,”
Int. J. Heat Fluid Flow
,
30
(
2
), pp.
380
388
.10.1016/j.ijheatfluidflow.2009.01.009
10.
Savino
,
R.
,
Cecere
,
A.
,
di Paola
,
R.
,
Abe
,
Y.
,
Castagnolo
,
D.
, and
Fortezza
,
R.
,
2009
, “
Marangoni Heat Pipe: An Experiment on Board MIOsat Italian Microsatellite
,”
Acta Astronaut.
,
65
(
11–12
), pp.
1582
1592
.10.1016/j.actaastro.2009.04.005
11.
Dhanalakota
,
P.
,
Abraham
,
S.
,
Mahapatra
,
P. S.
,
Sammakia
,
B.
, and
Pattamatta
,
A.
,
2022
, “
Thermal Performance of a Two-Phase Flat Thermosyphon With Surface Wettability Modifications
,”
Appl. Therm. Eng.
,
204
, p.
117862
.10.1016/j.applthermaleng.2021.117862
12.
Lu
,
S.
, and
Vafai
,
K.
,
2022
, “
Optimization of the Thermal Performance of Three-Dimensional Integrated Circuits Utilizing Rectangular-Shaped and Disk-Shaped Heat Pipes
,”
ASME J. Heat Transfer-Trans. ASME
,
144
(
6
), p.
061901
.10.1115/1.4053803
13.
Vafai
,
K.
, and
Wang
,
W.
,
1992
, “
Analysis of Flow and Heat Transfer Characteristics of an Asymmetrical Flat Plate Heat Pipe
,”
Int. J. Heat Mass Trans.
, 35(
9
), pp.
2087
2099
.10.1016/0017-9310(92)90054-V
14.
Zhang
,
M.
,
Liu
,
Z.
,
Ma
,
G.
, and
Cheng
,
S.
,
2009
, “
Numerical Simulation and Experimental Verification of a Flat Two-Phase Thermosyphon
,”
Energy Convers. Manag.
,
50
(
4
), pp.
1095
1100
.10.1016/j.enconman.2008.12.001
15.
Alizadehdakhel
,
A.
,
Rahimi
,
M.
, and
Alsairafi
,
A. A.
,
2010
, “
CFD Modeling of Flow and Heat Transfer in a Thermosyphon
,”
Int. Commun. Heat Mass Transfer
,
37
(
3
), pp.
312
318
.10.1016/j.icheatmasstransfer.2009.09.002
16.
Fadhl
,
B.
,
Wrobel
,
L. C.
, and
Jouhara
,
H.
,
2013
, “
Numerical Modelling of the Temperature Distribution in a Two-Phase Closed Thermosyphon
,”
Appl. Therm. Eng.
,
60
(
1–2
), pp.
122
131
.10.1016/j.applthermaleng.2013.06.044
17.
Alammar
,
A. A.
,
Al-Dadah
,
R. K.
, and
Mahmoud
,
S. M.
,
2016
, “
Numerical Investigation of Effect of Fill Ratio and Inclination Angle on a Thermosiphon Heat Pipe Thermal Performance
,”
Appl. Therm. Eng.
,
108
, pp.
1055
1065
.10.1016/j.applthermaleng.2016.07.163
18.
Mamalis
,
D.
,
Koutsos
,
V.
, and
Sefiane
,
K.
,
2018
, “
Nonisothermal Spreading Dynamics of Self-Rewetting Droplets
,”
Langmuir
,
34
(
5
), pp.
1916
1931
.10.1021/acs.langmuir.7b04045
19.
Gao
,
J. H.
,
Wu
,
S. C.
,
Lee
,
Y. W.
,
Chou
,
T. L.
, and
Chen
,
Y. C.
,
2022
, “
The Study of Novel Self-Rewetting Fluid Application to Loop Heat Pipe
,”
Appl. Sci. (Switzerland)
,
12
(
6
), p.
3121
.10.3390/app12063121
20.
Hosseinzadeh
,
K.
,
Ganji
,
D. D.
, and
Ommi
,
F.
,
2020
, “
Effect of SiO2 Super-Hydrophobic Coating and Self-Rewetting Fluid on Two Phase Closed Thermosyphon Heat Transfer Characteristics: An Experimental and Numerical Study
,”
J. Mol. Liq.
,
315
, p.
113748
.10.1016/j.molliq.2020.113748
21.
Senthilkumar
,
R.
,
Vaidyanathan
,
S.
, and
Sivaraman
,
B.
,
2011
, “
Thermal Analysis of Heat Pipe Using Self Rewetting Fluids
,”
Therm. Sci.
,
15
(
3
), pp.
879
888
.10.2298/TSCI101102020S
22.
Monje-Galvan
,
V.
, and
Klauda
,
J. B.
,
2020
, “
Interfacial Properties of Aqueous Solutions of Butanol Isomers and Cyclohexane
,”
Fluid Phase Equilib.
,
513
, p.
112551
.10.1016/j.fluid.2020.112551
23.
Hu
,
Y.
,
Huang
,
K.
, and
Huang
,
J.
,
2018
, “
A Review of Boiling Heat Transfer and Heat Pipes Behaviour With Self-Rewetting Fluids
,”
Int. J. Heat Mass Transfer
,
121
, pp.
107
118
.10.1016/j.ijheatmasstransfer.2017.12.158
24.
Wu
,
S. C.
,
2015
, “
Study of Self-Rewetting Fluid Applied to Loop Heat Pipe
,”
Int. J. Therm. Sci.
,
98
, pp.
374
380
.10.1016/j.ijthermalsci.2015.07.024
25.
Hosseinzadeh
,
K.
,
Erfani Moghaddam
,
M. A.
,
Hatami
,
M.
,
Ganji
,
D. D.
, and
Ommi
,
F.
,
2022
, “
Experimental and Numerical Study for the Effect of Aqueous Solution on Heat Transfer Characteristics of Two Phase Close Thermosyphon
,”
Int. Commun. Heat Mass Transfer
,
135
, p.
106129
.10.1016/j.icheatmasstransfer.2022.106129
26.
Savino
,
R.
,
di Paola
,
R.
,
Cecere
,
A.
, and
Fortezza
,
R.
,
2010
, “
Self-Rewetting Heat Transfer Fluids and Nanobrines for Space Heat Pipes
,”
Acta Astronaut.
,
67
(
9–10
), pp.
1030
1037
.10.1016/j.actaastro.2010.06.034
27.
de Schepper
,
S. C. K.
,
Heynderickx
,
G. J.
, and
Marin
,
G. B.
,
2008
, “
CFD Modeling of All Gas-Liquid and Vapor-Liquid Flow Regimes Predicted by the Baker Chart
,”
Chem. Eng. J.
,
138
(
1–3
), pp.
349
357
.10.1016/j.cej.2007.06.007
28.
de Schepper
,
S. C. K.
,
Heynderickx
,
G. J.
, and
Marin
,
G. B.
,
2009
, “
Modeling the Evaporation of a Hydrocarbon Feedstock in the Convection Section of a Steam Cracker
,”
Comput. Chem. Eng.
,
33
(
1
), pp.
122
132
.10.1016/j.compchemeng.2008.07.013
29.
Medvescek
,
J. I.
,
Mydlarski
,
L.
, and
Baliga
,
B. R. R.
,
2021
, “
Densities of Dilute Aqueous Solutions of 1-Butanol and 1-Pentanol at Atmospheric Pressure and Temperatures in the Range of 283.15 to 353.15 K
,”
J. Chem. Eng. Data
,
66
(
4
), pp.
1582
1591
.10.1021/acs.jced.0c00680
You do not currently have access to this content.