Abstract

Prior work has explored utilizing machine learning for the Lorenz system in the time domain. In this work, we have focused on applications of machine learning for predicting the onset of chaotic transitions in the Lorenz system. Our methods included the development of a robust numerical solution to the Lorenz equations using a fourth order Runge–Kutta method. We solved the Lorenz equations for a large range of Raleigh ratios from 1 to 1000. We calculated the power spectral density, various descriptive statistics, and a cluster analysis using unsupervised machine learning. To identify behaviors and regions in the data, we utilize unsupervised learning as it is designed to assist in recognizing patterns without being told or trained by prior knowledge. We confirmed the performance of the machine learning system's ability to identify chaotic transitions independent of expert selection of Raleigh ratio ranges. The system correctly identifies the transitional behaviors described in prior mathematical work. The results indicate that the power spectral density is very important for the clustering. We also found that examining machine learning clusters by dimension (x, y, and z) was important to understand many of the facets of the chaotic transitions. The results provide a visual mapping of the regions where chaotic transitions may occur based on variations in the Prandtl number and geometry constant. Unsupervised machine learning may be used as a tool to characterize the transition regions for these geometries, providing new lenses for the heat transfer community.

References

1.
Elder
,
J.
,
1965
, “
Laminar Free Convection in a Vertical Slot
,”
J. Fluid Mech.
,
23
(
01
), pp.
77
98
.10.1017/S0022112065001246
2.
Vest
,
C. H.
, and
Arpaci
,
V. S.
,
1969
, “
Stability of Natural Convection in a Vertical Slot
,”
Int. J. Fluid Mech.
,
36
(
1
), pp.
1
15
.10.1017/S0022112069001467
3.
Le Quéré
,
P.
, and
Penot
,
F.
,
1987
, “
Numerical and Experimental Investigation of the Transsition to Unsteady Natural Convection of Air in a Vertical Differentially Heated Cavity
,”
ASME
Paper No. IMECE2009-11657.10.1115/IMECE2009-11657
4.
Dillon
,
H. E.
,
Emery
,
A. F.
, and
Mescher
,
A. M.
,
2011
, “
Chaotic Behavior of Natural Convection in a Tall Rectangular Cavity With Non-Isothermal Walls
,”
AIP Conf. Proc.
1389
(
1
), pp.
127
130
.
5.
Doherty
,
P.
,
Dillon
,
H.
, and
Roberts
,
J.
,
2017
, “
Experimental Validation of Natural Convection in a Rectangle Using Schlieren Imaging
,”
Front. Heat Mass Transfer
,
9
(
1
), pp. 1-6.10.5098/hmt.9.1
6.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.10.1038/nature14539
7.
Cenek
,
M.
,
Haro
,
R.
,
Sayers
,
B.
, and
Peng
,
J.
,
2018
, “
Climate Change and Power Security: Power Load Prediction for Rural Electrical Microgrids Using Long Short Term Memory and Artificial Neural Networks
,”
Appl. Sci.
,
8
(
5
), p.
749
.10.3390/app8050749
8.
Zhang
,
W.
,
Surve
,
A.
,
Fern
,
X.
, and
Dietterich
,
T.
,
2009
, “
Learning Non-Redundant Codebooks for Classifying Complex Objects
,”
Proceedings of the 26th Annual International Conference on Machine Learning
, Montreal, QC, Canada, June 14–18, pp.
1241
1248
.10.1145/1553374.1553533
9.
Cenek
,
M.
, and
Dahl
,
S. K.
,
2016
, “
Geometry of Behavioral Spaces: A Computational Approach to Analysis and Understanding of Agent Based Models and Agent Behaviors
,”
Chaos: An Interdiscip. J. Nonlinear Sci.
,
26
(
11
), p.
113107
.10.1063/1.4965982
10.
Stogatz
,
S.
,
2000
,
Nonlinear Dynamics and Chaos
,
Perseus Books Publishing
, New York.
11.
Lorenz
,
E. N.
,
1963
, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
,
20
(
2
), pp.
130
141
.10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
12.
Sparrow
,
C.
,
1982
, “
The Lorenz Equations - Bifurcations
,”
Chaos, and Strange Attractors
,
Springer
, New York.
13.
Guerra
,
F.
, and
Coelho
,
L.
,
2005
, “
Radial Basis Neural Network Learning Based on Particle Swarm Optimization to Multistep Prediction of Chaotic Lorenz's System
,” Fifth International Conference on Hybrid Intelligent Systems (
HIS'05
),
IEEE
, Rio de Janeiro, Brazil, Nov. 6–9, p.
3
.10.1109/ICHIS.2005.91
14.
Rapaic
,
M. R.
,
Kanovic
,
Z.
,
Jelicic
,
Z. D.
, and
Petrovacki
,
D.
,
2008
, “
Generalized PSO Algorithm – an application to Lorenz System Identification by Means of Neural-Networks
,”
2008 9th Symposium on Neural Network Applications in Electrical Engineering
,
IEEE
, Belgrade, Serbia, Sept. 25–27, pp.
31
35
.10.1109/NEUREL.2008.4685554
15.
Rojas
,
I.
,
Valenzuela
,
O.
,
Rojas
,
F.
,
Guillen
,
A.
,
Herrera
,
L.
,
Pomares
,
H.
,
Marquez
,
L.
, and
Pasadas
,
M.
,
2008
, “
Soft-Computing Techniques and ARMA Model for Time Series Prediction
,”
Neurocomputing
,
71
(
4–6
), pp.
519
537
.10.1016/j.neucom.2007.07.018
16.
Lazzús
,
J. A.
,
Rivera
,
M.
, and
López-Caraballo
,
C. H.
,
2016
, “
Parameter Estimation of Lorenz Chaotic System Using a Hybrid Swarm Intelligence Algorithm
,”
Phys. Lett. A
,
380
(
11–12
), pp.
1164
1171
.10.1016/j.physleta.2016.01.040
17.
Zhang
,
L.
,
2017
, “
Artificial Neural Network Model Design and Topology Analysis for FPGA Implementation of Lorenz Chaotic Generator
,” 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (
CCECE
),
IEEE
, Windsor, ON, Canada, Apr. 30–May 3, pp.
1
4
.10.1109/CCECE.2017.7946635
18.
Pathak
,
J.
,
Wikner
,
A.
,
Fussell
,
R.
,
Chandra
,
S.
,
Hunt
,
B. R.
,
Girvan
,
M.
, and
Ott
,
E.
,
2018
, “
Hybrid Forecasting of Chaotic Processes: Using Machine Learning in Conjunction With a Knowledge-Based Model
,”
Chaos: An Interdiscip. J. Nonlinear Sci.
,
28
(
4
), p.
041101
.10.1063/1.5028373
19.
Tribelhorn
,
B.
, and
Dillon
,
H. E.
,
2021
, “
Machine Learning for Chaotic Rayleigh Transitions
,”
ASME
Paper No. HT2021-61158.10.1115/HT2021-61158
20.
Tribelhorn
,
B.
, and
Dillon
,
H. E.
,
2021
, “
Parametric Analysis and Validation of Machine Learning in Chaotic Transitions of the Lorenz System
,”
ASME
Paper No. IMECE2021-71766.10.1115/IMECE2021-71766
21.
Lloyd
,
S. P.
,
1982
, “
Least Squares Quantization in PCM
,”
IEEE Trans. Inf. Theory
,
28
(
2
), pp.
129
137
.10.1109/TIT.1982.1056489
22.
Arthur
,
D.
, and
Vassilvitskii
,
S.
,
2007
, “
k-Means++: The Advantages of Careful Seeding
,”
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics
, Philadelphia, PA, New Orleans, LO, Jan. 7–9, pp.
1027
1035
.10.5555/1283383.1283494
23.
Sinaga
,
K. P.
, and
Yang
,
M.-S.
,
2020
, “
Unsupervised K-Means Clustering Algorithm
,”
IEEE Access
,
8
, pp.
80716
80727
.10.1109/ACCESS.2020.2988796
24.
Coates
,
A.
, and
Ng
,
A. Y.
,
2012
, “
Learning Feature Representations With k-Means
,”
Neural Networks: Tricks of the Trade
,
Springer
, Berlin, Heidelberg, pp.
561
580
.
25.
Mathworks
,
2022
, “
Solve Nonstiff Differential Equations – Medium Order Method - MATLAB Ode45
,” Mathworks, Natick, MA, accessed Jan. 12, 2022, https://www.mathworks.com/help/matlab/ref/ode45.html
26.
Welch
,
P. D.
,
1967
, “
The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms
,”
IEEE Trans. Audio Electroacoust.
,
15
(
2
), pp.
70
73
.10.1109/TAU.1967.1161901
27.
Mathworks
,
2007
, “
Find Local maxima-MATLAB 2007b Findpeaks
,” Mathworks, Natick, MA, accessed Dec. 22, https://www.mathworks.com/help/signal/ref/findpeaks.html
28.
Rousseeuw
,
P. J.
,
1987
, “
Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis
,”
J. Comput. Appl. Math.
,
20
, pp.
53
65
.10.1016/0377-0427(87)90125-7
29.
Tukey
,
J. W.
,
1977
,
Exploratory Data Analysis
,
Addison-Wesley
, Reading, MA.
30.
Iglewicz
,
B.
, and
Hoaglin
,
D. C.
,
1993
,
How to Detect and Handle Outliers
,
ASQC Quality Press
, Milwaukee, WI.
You do not currently have access to this content.