Abstract

The use of transport membrane condenser (TMC) technology to recover heat and mass from the flue gas has been increasing recently. The heat and mass transfer from the TMC tube bundle have been studied experimentally and numerically, and several numerical models have been proposed. Although many heat transfer and pressure drop correlations are available for single-phase flows over tube bundles of solid walls, to the best of our knowledge, there is a lack of heat and mass transfer and pressure drop correlations for the porous membrane tubes with condensing flue gas that cover a wide range of parameters. In this study, the heat transfer, mass transfer, and pressure drop imposed by the crossflow ceramic nanoporous tubes in TMC have been studied numerically within wide ranges of tube diameters (4.57–7.62 mm), number of rows (2–24 rows), and Reynolds number (170–8900), under flue gas condensation. The turbulent flow of the flue gas mixture was modeled by the shear stress transport SSTkω turbulence model. A hybrid/mixed condensation model written in user defined functions was employed to calculate the water vapor condensation rate. Numerical results with condensing flue gas are compared to available correlations for single-phase Nusselt number and pressure drops in the literature. It was found that except for selected conditions, the single-phase correlations noticeably differed from the TMC numerical results. Empirical TMC correlations for heat transfer and pressure drops with respect to condensation rate, number of rows, and the nanoporous membrane geometrical properties were derived thereby. The derived correlations for TMC show a good agreement with numerical data for all investigated parameters and can predict the 96% of the convective Nusselt number, overall Nusselt number, and friction factor inside the TMC within ±10%, ±10%, and ±15%, respectively. The effects of key parameters on the heat transfer, mass transfer, and pressure drops are illustrated and discussed in detail.

References

1.
Wang
,
D.
,
2011
, “
Advanced Energy and Water Recovery Technology From Low Grade Waste Heat
,” Gas Technology Institute, Des Plaines, IL, Final Technical Report No. DE-EE0003477.
2.
Wang
,
D.
,
2012
, “
Transport Membrane Condenser for Water and Energy Recovery From Power Plant Flue Gas
,” Gas Technology Institute, Des Plaines, IL, Technical Report No. DE‐NT0005350.
3.
Wang
,
D.
,
Bao
,
A.
,
Kunc
,
W.
, and
Liss
,
W. D.
,
2012
, “
Coal Power Plant Flue Gas Waste Heat and Water Recovery
,”
Appl. Energy
,
91
(
1
), pp.
341
348
.10.1016/j.apenergy.2011.10.003
4.
Ghaneifar
,
M.
,
Raisi
,
A.
,
Hafiz Ali
,
M.
, and
Talebizadehsardari
,
P.
,
2021
, “
Mixed Convection Heat Transfer of AL2O3 Nanofluid in a Horizontal Channel Subjected With Two Heat Sources
,”
J. Therm. Anal. Calorim.
,
143
(
3
), pp.
2761
2774
.10.1007/s10973-020-09887-2
5.
Awan
,
S. E.
,
Awais
,
M.
,
Raja
,
M. A. Z.
,
Parveen
,
N.
,
Ali
,
H. M.
,
Khan
,
W. U.
, and
Yigang
,
H.
,
2021
, “
Numerical Treatment for Dynamics of Second Law Analysis and Magnetic Induction Effects on Ciliary Induced Peristaltic Transport of Hybrid Nanomaterial
,”
Front. Phys.
,
9
, p.
631903
.10.3389/fphy.2021.631903
6.
Khan
,
M. A.
,
Imam
,
M. K.
,
Irshad
,
K.
,
Ali
,
H. M.
,
Hasan
,
M. A.
, and
Islam
,
S.
,
2021
, “
Comparative Overview of the Performance of Cementitious and Non-Cementitious Nanomaterials in Mortar at Normal and Elevated Temperatures
,”
Nanomaterials
,
11
(
4
), p.
911
.10.3390/nano11040911
7.
Moria
,
H.
,
2021
, “
Compound Usage of Twisted Tape Turbulator and Air Injection for Heat Transfer Augmentation in a Vertical Straight Tube With Upward Stream
,”
Case Stud. Therm. Eng.
,
25
, p.
100854
.10.1016/j.csite.2021.100854
8.
Lin
,
C. X.
,
Wang
,
D.
, and
Bao
,
A.
,
2013
, “
Numerical Modeling and Simulation of Condensation Heat Transfer of a Flue Gas in a Bundle of Transport Membrane Tubes
,”
Int. J. Heat Mass Transfer
,
60
, pp.
41
50
.10.1016/j.ijheatmasstransfer.2012.12.053
9.
Xiao
,
L.
,
Yang
,
M.
,
Zhao
,
S.
,
Yuan
,
W. Z.
, and
Huang
,
S. M.
,
2019
, “
Entropy Generation Analysis of Heat and Water Recovery From Flue Gas by Transport Membrane Condenser
,”
Energy
,
174
, pp.
835
847
.10.1016/j.energy.2019.03.015
10.
Zhang
,
F.
,
Ge
,
Z.
,
Shen
,
Y.
,
Du
,
X.
, and
Yang
,
L.
,
2017
, “
Mass Transfer Performance of Water Recovery From Flue Gas of Lignite Boiler by Composite Membrane
,”
Int. J. Heat Mass Transfer
,
115
, pp.
377
386
.10.1016/j.ijheatmasstransfer.2017.07.037
11.
Soleimanikutanaei
,
S.
,
Lin
,
C. X.
, and
Wang
,
D.
,
2018
, “
Modeling and Simulation of Cross-Flow Transport Membrane Condenser Heat Exchangers
,”
Int. Commun. Heat Mass Transfer
,
95
, pp.
92
97
.10.1016/j.icheatmasstransfer.2018.04.002
12.
Soleimanikutanaei
,
S.
,
Lin
,
C. X.
, and
Wang
,
D.
,
2019
, “
Numerical Modeling and Analysis of Transport Membrane Condensers for Waste Heat and Water Recovery From Flue Gas
,”
Int. J. Therm. Sci.
,
136
, pp.
96
106
.10.1016/j.ijthermalsci.2018.10.014
13.
Soleimanikutanaei
,
S.
,
Ghasemisahebi
,
E.
,
Lin
,
C. X.
, and
Wang
,
D.
,
2017
, “
Off-Design Modeling of Shell and Tube Transport Membrane Condenser Heat Exchangers
,”
ASME
Paper No. IMECE2017-72495.10.1115/IMECE2017-72495
14.
Soleimanikutanaei
,
S.
,
Lin
,
C. X.
, and
Wang
,
D.
,
2016
, “
Numerical Investigation of Heat Transfer and Condensation Rate in Two-Stage Transport Membrane Condenser Heat Exchanger Units
,”
ASME
Paper No. HT2016-7291.10.1115/HT2016-7291
15.
Soleimanikutanaei
,
S.
,
Lin
,
C. X.
, and
Wang
,
D.
,
2015
, “
Numerical Modeling of Industrial Scale Transport Membrane Condenser Based Heat Exchangers for Flue Gas Waste Heat and Water Recovery
,”
ASME
Paper No. IMECE2015-52324.10.1115/IMECE2015-52324
16.
Soleimanikutanaei
,
S.
,
Lin
,
C. X.
, and
Wang
,
D.
,
2017
, “
Performance Evaluation of Multi-Stage Shell and Tube Transport Membrane Condenser Heat Exchangers for Low Grade Waste Heat and Water Recovery
,”
ASME
Paper No. HT2017-5028.10.1115/HT2017-5028
17.
Al-Rifai
,
S.
, and
Lin
,
C. X.
,
2021
, “
Heat and Mass Transfer in Cross Flow Transport Membrane Condenser Based Heat Exchanger: A Computational Parametric Study
,”
Proceedings of the Fifth–Sixth Thermal and Fluids Engineering Conference (TFEC)
, Virtual, May 26–28, ASTFE Paper No. TFEC-2020-32231, pp.
949
958
.
18.
Al-Rifai
,
S.
, and
Lin
,
C. X.
,
2021
, “
Influence of Flue Gas Turbulence Intensity on the Heat and Mass Transfer and Pressure Drop Inside a TMC Based Heat Exchanger
,”
ASME
Paper No. HT2021-62552.10.1115/HT2021-62552
19.
Al-Rifai, S., and Lin, C. X., 2022, “Steady State Multiphase Modeling of Heat and Mass Transfer Inside Transport Membrane Condenser,” Proceedings of the 7th Thermal and Fluids Engineering Conference (TFEC), Las Vegas, NV, May 16–18, ASTFE Paper No. TFEC-2022-40942.
20.
Bao
,
A.
,
Wang
,
D.
, and
Lin
,
C. X.
,
2015
, “
Nanoporous Membrane Tube Condensing Heat Transfer Enhancement Study
,”
Int. J. Heat Mass Transfer
,
84
, pp.
456
462
.10.1016/j.ijheatmasstransfer.2014.12.069
21.
Chao
,
C.
,
Liang
,
D.
,
Zhang
,
Y.
,
Zhang
,
H.
,
Chen
,
H.
, and
Gao
,
D.
,
2021
, “
Pilot-Scale Study on Flue Gas Moisture Recovery in a Coal-Fired Power Plant
,”
Sep. Purif. Technol.
,
254
, p.
117254
.10.1016/j.seppur.2020.117254
22.
Li
,
Z. H.
,
Zhang
,
H.
, and
Chen
,
H.
,
2020
, “
Application of Transport Membrane Condenser for Recovering Water in a Coal-Fired Power Plant: A Pilot Study
,”
J. Cleaner Prod.
,
261
, p.
121229
.10.1016/j.jclepro.2020.121229
23.
Cheng
,
C.
,
Zhang
,
H.
, and
Chen
,
H.
,
2020
, “
Experimental Study on Water Recovery From Flue Gas Using Macroporous Ceramic Membrane
,”
Materials
,
13
, p.
804
.10.3390/ma13030804
24.
Li
,
Z.
,
Xue
,
K.
,
Zhang
,
H.
,
Chen
,
H.
, and
Gao
,
D.
,
2020
, “
Numerical Investigation on Condensation Mode of the Transport Membrane Condenser
,”
Int. J. Heat Mass Transfer
,
161
, p.
120305
.10.1016/j.ijheatmasstransfer.2020.120305
25.
Li
,
Z.
,
Zhang
,
H.
,
Chen
,
H.
,
Huang
,
J.
, and
Fu
,
H.
,
2020
, “
Water Vapor Capture Using Microporous Ceramic Membrane
,”
Desalination
,
482
, p.
114405
.10.1016/j.desal.2020.114405
26.
Zhang
,
J.
,
Li
,
Z.
,
Zhang
,
H.
,
Chen
,
H.
, and
Gao
,
D.
,
2020
, “
Numerical Study on Recovering Moisture and Heat From Flue Gas by Means of a Macroporous Ceramic Membrane Module
,”
Energy
,
207
, p.
118230
.10.1016/j.energy.2020.118230
27.
Gao
,
D.
,
Li
,
Z.
,
Zhang
,
H.
,
Zhang
,
J.
,
Chen
,
H.
, and
Fu
,
H.
,
2019
, “
Moisture Recovery From Gas-Fired Boiler Exhaust Using Membrane Module Array
,”
J. Cleaner Prod.
,
231
, pp.
1110
1121
.10.1016/j.jclepro.2019.05.320
28.
Chen
,
H.
, and
Yang
,
B.
,
2018
, “
Experiment and Simulation Method to Investigate the Flow Within Porous Ceramic Membrane
,”
J. Aust. Ceram. Soc.
,
54
(
3
), pp.
575
586
.10.1007/s41779-018-0186-3
29.
Chen
,
H.
,
Zhou
,
Y.
,
Su
,
X.
,
Cao
,
S.
,
Liu
,
Y.
,
Gao
,
D.
, and
An
,
L.
,
2018
, “
Experimental Study of Water Recovery From Flue Gas Using Hollow Micro–Nano Porous Ceramic Composite Membranes
,”
J. Ind. Eng. Chem.
,
57
, pp.
349
355
.10.1016/j.jiec.2017.08.042
30.
Zhao
,
S.
,
Yan
,
S.
,
Wang
,
D. K.
,
Wei
,
Y.
,
Qi
,
H.
,
Wu
,
T.
, and
Feron
,
P. H. M.
,
2017
, “
Simultaneous Heat and Water Recovery From Flue Gas by Membrane Condensation: Experimental Investigation
,”
Appl. Therm. Eng.
,
113
, pp.
843
850
.10.1016/j.applthermaleng.2016.11.101
31.
Chen
,
H.
,
Zhou
,
Y.
,
Cao
,
S.
,
Li
,
X.
,
Su
,
X.
,
An
,
L.
, and
Gao
,
D.
,
2017
, “
Heat Exchange and Water Recovery Experiments of Flue Gas With Using Nanoporous Ceramic Membranes
,”
Appl. Therm. Eng.
,
110
, pp.
686
694
.10.1016/j.applthermaleng.2016.08.191
32.
Zhou
,
Y.
,
Chen
,
H.
,
Xie
,
T.
,
Wang
,
B.
, and
An
,
L.
,
2017
, “
Effect of Mass Transfer on Heat Transfer of Microporous Ceramic Membranes for Water Recovery
,”
Int. J. Heat Mass Transfer
,
112
, pp.
643
648
.10.1016/j.ijheatmasstransfer.2017.05.027
33.
Yue
,
M.
,
Zhao
,
S.
,
Feron
,
P. H. M.
, and
Qi
,
H.
,
2016
, “
Multichannel Tubular Ceramic Membrane for Water and Heat Recovery From Waste Gas Streams
,”
Ind. Eng. Chem. Res.
,
55
(
9
), pp.
2615
2622
.10.1021/acs.iecr.6b00242
34.
Wang
,
T.
,
Yue
,
M.
,
Qi
,
H.
,
Feron
,
P. H. M.
, and
Zhao
,
S.
,
2015
, “
Transport Membrane Condenser for Water and Heat Recovery From Gaseous Streams: Performance Evaluation
,”
J. Membr. Sci.
,
484
, pp.
10
17
.10.1016/j.memsci.2015.03.007
35.
Zhang
,
C.
,
Sousa
,
A. C. M.
, and
Venart
,
J. E. S.
,
1993
, “
The Numerical and Experimental Study of a Power Plant Condenser
,”
ASME J. Heat Transfer-Trans. ASME
,
115
(
2
), pp.
435
445
.10.1115/1.2910696
36.
Grimison
,
E. D.
,
1937
, “
Correlation and Utilization of New Data on Flow Resistance and Heat Transfer for Cross Flow of Gases Over Tube Banks
,”
Trans. ASME
,
59
, pp.
583
594
.
37.
Pierson
,
O. L.
,
1937
, “
Experimental Investigation of the Influence of Tube Arrangement on Convection Heat Transfer and Flow Resistance in Cross Flow of Gases Over Tube Banks
,”
Trans. ASME
,
59
, pp.
563
572
.
38.
Huge
,
E. C.
,
1937
, “
Experimental Investigation of Effects of Equipment Size on Convection Heat Transfer and Flow Resistance in Cross Flow of Gases Over Tube Banks
,”
Trans. ASME
,
59
, pp.
573
581
.
39.
Hausen
,
H.
,
1983
,
Heat Transfer in Counterflow, Parallel Flow and Cross Flow
,
McGraw-Hill Book Company
,
New York
.
40.
Zukauskas
,
A.
,
1972
, “
Heat Transfer From Tubes in Crossflow
,”
Adv. Heat Transfer
,
8
, pp.
93
160
.10.1016/S0065-2717(08)70038-8
41.
Zukauskas
,
A.
,
1987
, “
Convective Heat Transfer in Cross Flow
,”
Handbook of Single-Phase Convective Heat Transfer
,
S.
Kakac
,
R. K.
Shah
, and
W.
Aung
, eds.,
Wiley
,
New York
, Chap.
6
.
42.
Zukauskas
,
A.
, and
Ulinskas
,
R.
,
1988
,
Heat Transfer in Tube Banks in Crossflow
, Vol. 1,
Hemisphere Publishing
,
New York
, pp.
63
93
.
43.
Wilson
,
A. S.
, and
Bassiouny
,
M. K.
,
2000
, “
Modeling of Heat Transfer for Flow Across Tube Banks
,”
Chem. Eng. Process.: Process Intensif.
,
39
, pp.
1
14
.10.1016/S0255-2701(99)00069-0
44.
Jakob
,
M.
,
1938
, “
Transfer and Flow Resistance in Cross Flow of Gases Over Tube Banks
,”
Trans. ASME
,
60
, pp.
384
386
.
45.
Gunter
,
A. Y.
, and
Shaw
,
W. A.
,
1945
, “
A General Correlation of Friction Factors for Various Types of Surfaces in Crossflow
,”
Trans. ASME
,
67
, pp.
643
660
.
46.
Boucher
,
D. F.
, and
Lapple
,
C. E.
,
1948
, “
Pressure Drop Across Tube Banks: Critical Comparison of Available Data and of Proposed Methods of Correlation
,”
Chem. Eng. Prog.
,
44
(
2
), pp.
117
134
.
47.
ANSYS Inc.
, 2022, “
ANSYS Fluent 2019R1
,”
ANSYS
, Canonsburg, PA, accessed Mar. 25, 2022, http://www.ansys.com
48.
Moukalled
,
F.
,
Mangani
,
L.
, and
Darwish
,
M.
,
2016
,
The Finite Volume Method in Computational Fluid Dynamics, An Advanced Introduction With OpenFOAM and Matlab
,
Springer
,
Berlin
.
49.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
50.
Uchytil
,
P.
,
Petrickovic
,
R.
, and
Seidel-Morgenstern
,
A.
,
2005
, “
Study of Capillary Condensation of Butane in a Vycor Glass Membrane
,”
J. Membr. Sci.
,
264
(
1–2
), pp.
27
36
.10.1016/j.memsci.2005.04.017
51.
Ramezanpour
,
A.
,
Mirzaee
,
I.
,
Rahmani
,
R.
, and
Shirvani
,
H.
,
2006
, “
Numerical Study of Staggered Tube Bundle in Turbulent Cross Flow for an Optimum Arrangement
,”
Int. J. Heat Exch.
,
7
(
1
), pp.
37
56
.https://www.researchgate.net/publication/265161614_Numerical_Study_of_Staggered_Tube_Bundle_in_Turbulent_Cross_Flow_for_an_Optimum_Arrangement
You do not currently have access to this content.