Abstract

An improved numerical model is developed for coupled heat and moisture transport in fire protective suits exposed to flash fire. This model is combined with Pennes' bioheat transfer model and subsequently, second-degree burn time is estimated using Henriques' burn integral. Natural convection is considered inside the airgap present between the multilayer clothing ensemble and the skin. Comparisons of temperature and moisture distribution within the multilayer clothing, airgap, and the skin during the exposure are presented considering combined heat and moisture transport and only heat transport. The effect of moisture transport on the protective performance of the fire protective suits is shown. The impact of both horizontal and vertical airgap orientations on second-degree burn time is studied. The effect of temperature-dependent thermophysical properties, relative humidity, fiber regain, different exposure conditions, and fabric combinations for the fire protective suits on burn time is analyzed.

References

1.
Campbell
,
R.
, and
Molis
,
J.
,
2019
, “
United States Firefighter Injuries in 2018
,”
NFPA J.
, National Fire Protection Association, Quincy, MA, https://www.nfpa.org/News-and-Research/Publications-and-media/NFPA-Journal/2019/November-December-2019/Features/FF-Injuries
2.
Smith
,
D. L.
,
2011
, “
Firefighter Fitness: Improving Performance and Preventing Injuries and Fatalities
,”
Curr. Sports Med. Rep
,
10
(
3
), pp.
167
172
.10.1249/JSR.0b013e31821a9fec
3.
Behnke, W. P., 1977, "Thermal Protective Performance Test for Clothing," Fire Technology, 13(1), pp. 6-12.
4.
Shalev
,
I.
, and
Barker
,
R. L.
,
1983
, “
Analysis of Heat Transfer Characteristics of Fabrics in an Open Flame Exposure
,”
Text. Res. J.
,
53
(
8
), pp.
475
482
.10.1177/004051758305300806
5.
Song
,
G.
,
2007
, “
Clothing Airgap Layers and Thermal Protective Performance in Single Layer Garment
,”
J. Ind. Text.
,
36
(
3
), pp.
193
205
.10.1177/1528083707069506
6.
Lu
,
Y.
,
Li
,
J.
,
Li
,
X.
, and
Song
,
G.
,
2013
, “
The Effect of Airgaps in Moist Protective Clothing on Protection From Heat and Flame
,”
J. Fire Sci.
,
31
(
2
), pp.
99
111
.10.1177/0734904112457342
7.
Ghazy
,
A.
,
2014
, “
Influence of Thermal Shrinkage on Protective Clothing Performance During Fire Exposure: Numerical Investigation
,”
Mech. Eng. Res.
,
4
(
2
), p. 1.10.5539/mer.v4n2p1
8.
Talukdar
,
P.
,
Das
,
A.
, and
Alagirusamy
,
R.
,
2017
, “
Effect of Structural Parameters on Thermal Protective Performance and Comfort Characteristic of Fabrics
,”
J. Text. Inst.
,
108
(
8
), pp.
1430
1441
.10.1080/00405000.2016.1255123
9.
Torvi
,
D. A.
,
1997
, “
Heat Transfer in Thin Fibrous Materials Under High Heat Flux Conditions
,”
Unpubl. Dr. Diss.
, Edmonton, AB, University of Alberta.10.7939/R3M03Z33Z
10.
Torvi
,
D. A.
, and
Dale
,
J. D.
,
1999
, “
Heat Transfer in Thin Fibrous Materials Under High Heat Flux
,”
Fire Technol.
,
35
(
3
), pp.
210
231
.10.1023/A:1015484426361
11.
Lawson
,
J. R.
,
Mell
,
W. E.
, and
Prasad
,
K.
,
2000
, “
A Heat Transfer Model for Firefighters' Protective Clothing, Continued Developments in Protective Clothing Modeling
,”
Fire Technol.
,
36
(
1
), pp.
39
68
.10.1023/A:1015429820426
12.
Sawcyn
,
C. M. J.
, and
Torvi
,
D. A.
,
2009
, “
Improving Heat Transfer Models of Airgaps in Bench Top Tests of Thermal Protective Fabrics
,”
Text. Res. J.
,
79
(
7
), pp.
632
644
.10.1177/0040517508093415
13.
Ghazy
,
A.
, and
Bergstrom
,
D. J.
,
2010
, “
Numerical Simulation of Transient Heat Transfer in a Protective Clothing System During a Flash Fire Exposure
,”
Numer. Heat Transfer Part A Appl.
,
58
(
9
), pp.
702
724
.10.1080/10407782.2010.516691
14.
Ghazy
,
A.
, and
Bergstrom
,
D. J.
,
2012
, “
Numerical Simulation of Heat Transfer in Firefighters' Protective Clothing With Multiple Airgaps During Flash Fire Exposure
,”
Numer. Heat Transfer Part A Appl.
,
61
(
8
), pp.
569
593
.10.1080/10407782.2012.666932
15.
Talukdar
,
P.
,
Torvi
,
D. A.
,
Simonson
,
C. J.
, and
Sawcyn
,
C. M. J.
,
2010
, “
Coupled CFD and Radiation Simulation of Airgaps in Bench Top Protective Fabric Tests
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
526
539
.10.1016/j.ijheatmasstransfer.2009.04.041
16.
Uday
,
R.
,
Talukdar
,
P.
,
Das
,
A.
, and
Alagirusamy
,
R.
,
2017
, “
Numerical Modeling of Heat Transfer and Fluid Motion in Airgap Between Clothing and Human Body: Effect of Airgap Orientation and Body Movement
,”
Int. J. Heat Mass Transfer
,
108
, pp.
271
291
.10.1016/j.ijheatmasstransfer.2016.12.016
17.
Uday
,
R.
,
Talukdar
,
P.
,
Das
,
A.
, and
Alagirusamy
,
R.
,
2017
, “
Numerical Investigation of the Effect of Airgap Orientations and Heterogeneous Airgap in Thermal Protective Clothing on Skin Burn
,”
Int. J. Therm. Sci.
,
121
, pp.
313
321
.10.1016/j.ijthermalsci.2017.07.025
18.
Uday
,
R.
, and
Wang
,
F.
,
2018
, “
A Three-Dimensional Conjugate Heat Transfer Model for Thermal Protective Clothing
,”
Int. J. Therm. Sci.
,
130
, pp.
28
46
.10.1016/j.ijthermalsci.2018.04.005
19.
Uday
,
R.
,
Talukdar
,
P.
,
Das
,
A.
, and
Alagirusamy
,
R.
,
2016
, “
Simultaneous Estimation of Thermal Conductivity and Specific Heat of Thermal Protective Fabrics Using Experimental Data of High Heat Flux Exposure
,”
Appl. Therm. Eng.
,
107
, pp.
785
796
.10.1016/j.applthermaleng.2016.07.051
20.
Prithiviraajan
,
R. N.
,
Somasundharam
,
S.
, and
Reddy
,
K. S.
,
2021
, “
Development of Experimental Methodology for Estimation of Thermo-Physical Properties of Engineering Materials Using Inverse Method
,”
Therm. Sci. Eng. Prog.
,
22
, p.
100832
.10.1016/j.tsep.2020.100832
21.
Ghazy
,
A.
,
2017
, “
The Thermal Protective Performance of Firefighters' Clothing: The Airgap Between the Clothing and the Body
,”
Heat Transfer Eng.
,
38
(
10
), pp.
975
986
.10.1080/01457632.2016.1212583
22.
Uday
,
R.
,
Talukdar
,
P.
,
Das
,
A.
, and
Alagirusamy
,
R.
,
2019
, “
Design and Development of a Test Method for Analyzing Protective Performance of Gloves Exposed to Radiant Heat Based on Computational Fluid Dynamics Analysis
,”
Heat Transfer Eng.
,
40
(
1–2
), pp.
95
108
.10.1080/01457632.2017.1404833
23.
Torvi
,
D. A.
, and
Dale
,
J. D.
,
1994
, “
A Finite Element Model of Skin Subjected to a Flash Fire
,”
ASME J. Biomech. Eng.
,
116
(
3
), pp.
250
255
.10.1115/1.2895727
24.
Jiang
,
S. C.
,
Ma
,
N.
,
Li
,
H. J.
, and
Zhang
,
X. X.
,
2002
, “
Effects of Thermal Properties and Geometrical Dimensions on Skin Burn Injuries
,”
Burns
,
28
(
8
), pp.
713
717
.10.1016/S0305-4179(02)00104-3
25.
Mercer
,
G. N.
, and
Sidhu
,
H. S.
,
2005
, “
Modeling Thermal Burns Due to Airbag Deployment
,”
Burns
,
31
(
8
), pp.
977
980
.10.1016/j.burns.2005.06.012
26.
Mercer
,
G.
, and
Sidhu
,
H.
,
2008
, “
Mathematical Modelling of the Effect of Fire Exposure on a New Type of Protective Clothing
,”
Anziam J.
,
48
, p.
289
.10.21914/anziamj.v49i0.346
27.
Jiang
,
Y. Y.
,
2010
, “
An Integrated Numerical Simulator for Thermal Performance Assessments of Firefighters' Protective Clothing
,”
Fire Saf. J.
,
45
(
5
), pp.
314
326
.10.1016/j.firesaf.2010.06.003
28.
Phelps
,
H.
, and
Sidhu
,
H.
,
2015
, “
A Mathematical Model for Heat Transfer in Fire Fighting Suits Containing Phase Change Materials
,”
Fire Saf. J.
,
74
, pp.
43
47
.10.1016/j.firesaf.2015.04.007
29.
Liu
,
J.
,
Chen
,
X.
, and
Xu
,
L. X.
,
1999
, “
New Thermal Wave Aspects on Burn Evaluation of Skin Subjected to Instantaneous Heating
,”
IEEE Trans. Biomed. Eng.
,
46
(
4
), pp.
420
428
.10.1109/10.752939
30.
D. Y
,
T.
,
2014
, “
Macro‐ to Microscale Heat Transfer
,”
Macro‐ to Microscale Heat Transfer
, Wiley, Hoboken, NJ, pp.
3
4
.
31.
Uday
,
R.
,
Talukdar
,
P.
,
Alagirusamy
,
R.
, and
Das
,
A.
,
2014
, “
Heat Transfer Analysis and Second Degree Burn Prediction in Human Skin Exposed to Flame and Radiant Heat Using Dual Phase Lag Phenomenon
,”
Int. J. Heat Mass Transfer
,
78
, pp.
1068
1079
.10.1016/j.ijheatmasstransfer.2014.07.073
32.
Patil
,
H. M.
, and
Maniyeri
,
R.
,
2019
, “
Finite Difference Method Based Analysis of Bio-Heat Transfer in Human Breast Cyst
,”
Therm. Sci. Eng. Prog.
,
10
, pp.
42
47
.10.1016/j.tsep.2019.01.009
33.
Gibson
,
P.
,
1996
, “
Multiphase Heat and Mass Transfer Through Hygroscopic Porous Media With Applications to Clothing Materials
,” U.S. Army Natick Research, Development Engineering Center, University of Massachusetts Lowell, Report No. Natick/TR-97, p.
36
.
34.
Whitaker
,
S.
,
1977
, “
Simultaneous Heat, Mass, and Momentum Transfer in Porous Media: A Theory of Drying
,”
Adv. Heat Transfer
,
13
(
C
), pp.
119
203
.10.1016/S0065-2717(08)70223-5
35.
Chitrphiromsri
,
P.
, and
Kuznetsov
,
A. V.
,
2003
, “
Modeling Heat and Moisture Transport in Firefighter Protective Clothing During Flash Fire Exposure
,”
Heat Mass Transfer Stoffuebertrag.
1
(
1
), pp.
1
215
.10.1007/s00231-004-0504-x
36.
Łapka
,
P.
,
Furmański
,
P.
, and
Wisniewski
,
T. S.
,
2016
, “
Numerical Modelling of Transient Heat and Moisture Transport in Protective Clothing
,”
J. Phys. Conf. Ser.
,
676
(
1
), p.
012014
.10.1088/1742-6596/676/1/012014
37.
Song
,
G.
,
Ding
,
D.
, and
Chitrphiromsri
,
P.
,
2008
, “
Numerical Simulations of Heat and Moisture Transport in Thermal Protective Clothing Under Flash Fire Conditions
,”
Int. J. Occup. Saf. Ergon.
,
14
(
1
), pp.
89
106
.10.1080/10803548.2008.11076752
38.
Keiser
,
C.
,
Wyss
,
P.
, and
Rossi
,
R. M.
,
2010
, “
Analysis of Steam Formation and Migration in Firefighters' Protective Clothing Using X-Ray Radiography
,”
Int. J. Occup. Saf. Ergon.
,
16
(
2
), pp.
217
229
.10.1080/10803548.2010.11076839
39.
Su
,
Y.
,
Li
,
R.
,
Song
,
G.
,
Li
,
J.
, and
Xiang
,
C.
,
2018
, “
Modeling Steam Heat Transfer in Thermal Protective Clothing Under Hot Steam Exposure
,”
Int. J. Heat Mass Transfer
,
120
, pp.
818
829
.10.1016/j.ijheatmasstransfer.2017.12.074
40.
Su
,
Y.
,
Tian
,
M.
,
Wang
,
Y.
,
Zhang
,
X.
, and
Li
,
J.
,
2021
, “
Experimental Study of Heat and Moisture Transfer in Vertical Airgap Under Protective Clothing Against Dry and Wet Heat Exposures
,”
Int. J. Cloth. Sci. Technol.
,
33
(
6
), pp.
873
888
.10.1108/IJCST-06-2020-0091
41.
Luo
,
Z.
, and
Xu
,
H.
,
2019
, “
Numerical Simulation of Heat and Mass Transfer Through Microporous Media With Lattice Boltzmann Method
,”
Therm. Sci. Eng. Prog.
,
9
, pp.
44
51
.10.1016/j.tsep.2018.10.006
42.
Hui Li
,
X.
,
Hu Lu
,
Y.
,
Li
,
J.
,
Yi Wang
,
Y.
, and
Zhou
,
L.
,
2012
, “
A New Approach to Evaluate the Effect of Moisture on Heat Transfer of Thermal Protective Clothing Under Flashover
,”
Fibers Polym.
,
13
(
4
), pp.
549
554
.10.1007/s12221-012-0549-2
43.
Lawson
,
L. K.
,
Crown
,
E. M.
,
Ackerman
,
M. Y.
, and
Dale
,
J. D.
,
2004
, “
Moisture Effects in Heat Transfer Through Clothing Systems for Wildland Firefighters
,”
Int. J. Occup. Saf. Ergon.
,
10
(
3
), pp.
227
238
.10.1080/10803548.2004.11076610
44.
Yi Wang
,
Y.
,
Hu Lu
,
Y.
,
Li
,
J.
, and
Huan Pan
,
J.
,
2012
, “
Effects of Airgap Entrapped in Multilayer Fabrics and Moisture on Thermal Protective Performance
,”
Fibers Polym.
, 13(5), pp. 647–652.
45.
Barker
,
R. L.
,
Guerth-Schacher
,
C.
,
Grimes
,
R. V.
, and
Hamouda
,
H.
,
2006
, “
Effects of Moisture on the Thermal Protective Performance of Firefighter Protective Clothing in Low-Level Radiant Heat Exposures
,”
Text. Res. J.
,
76
(
1
), pp.
27
31
.10.1177/0040517506053947
46.
Su
,
Y.
,
Li
,
J.
, and
Zhang
,
X.
,
2020
, “
A Coupled Model for Heat and Moisture Transport Simulation in Porous Materials Exposed to Thermal Radiation
,”
Transp. Porous Media
,
131
(
2
), pp.
381
397
.10.1007/s11242-019-01347-2
47.
Fu
,
M.
,
Yuan
,
M. Q.
, and
Weng
,
W. G.
,
2015
, “
Modeling of Heat and Moisture Transfer Within Firefighter Protective Clothing With the Moisture Absorption of Thermal Radiation
,”
Int. J. Therm. Sci.
,
96
, pp.
201
210
.10.1016/j.ijthermalsci.2015.05.008
48.
Zhang
,
H.
,
Song
,
G.
,
Ren
,
H.
, and
Cao
,
J.
,
2018
, “
The Effects of Moisture on the Thermal Protective Performance of Firefighter Protective Clothing Under Medium Intensity Radiant Exposure
,”
Text. Res. J.
,
88
(
8
), pp.
847
862
.10.1177/0040517517690620
49.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
1
(
2
), pp.
93
122
.10.1152/jappl.1948.1.2.93
50.
Hollands
,
K. G. T.
,
Unny
,
T. E.
,
Raithby
,
G. D.
, and
Konicek
,
L.
,
1976
, “
Free Convective Heat Transfer Across Inclined Air Layers
,”
ASME J. Heat Transfer-Trans. ASME
,
98
(
2
), pp.
189
193
.10.1115/1.3450517
51.
Denny
,
V. E.
, and
Clever
,
R. M.
,
1974
, “Comparisons of Galerkin and Finite Difference Methods for Solving Highly Nonlinear Thermally Driven Flows,” J. Comput. Phys., 16(3),
284
, pp.
271
284
.
52.
Stoll, A. M., and Chianta, M. A., 1968, A Method and Rating System for Evaluation of Thermal Protection, Naval Air Development Center Warminster Pa Aerospace Medical Research Department.
You do not currently have access to this content.