Abstract

It's an unsolved problem to calculate the thermal radiation view factors among fuel pebbles as accurately and quickly as possible in the simulation of the temperature fields within the pebble-bed. In this study, a series of fully connected neural networks (FCNs) has been developed to realize the fast calculation of view factors. In order to verify the accuracy and effects of the networks, the neural networks are compared with the Monte Carlo (MC) algorithm. The results show that, in most cases, the relative errors of the FCN method can be controlled within 1.0%, and the prediction accurate probability is up to 99%. In comparisons of specific examples, the temperature errors of the FCN method and the MC method are less than 1 K within the range neural networks have covered. In addition, the time of neural networks for a single calculation is about 2–20 μs, which is even less than 10−4 of the time taken by the MC algorithm. In conclusion, neural networks can greatly improve computational efficiency while keeping the same accuracy as the MC algorithm, which makes real-time simulation of the temperature fields possible.

References

1.
Sarbu
,
I.
, and
Dorca
,
A.
,
2019
, “
Review on Heat Transfer Analysis in Thermal Energy Storage Using Latent Heat Storage Systems and Phase Change Materials
,”
Int. J. Energy Res.
,
43
(
1
), pp.
29
64
.10.1002/er.4196
2.
Jiang
,
S.
,
Tu
,
J.
,
Yang
,
X.
, and
Gui
,
N.
,
2019
, “
A Review of Pebble Flow Study for Pebble Bed High Temperature Gas-Cooled Reactor
,”
Exp. Comput. Multiphase Flow
,
1
(
3
), pp.
159
176
.10.1007/s42757-019-0006-1
3.
van Antwerpen
,
W.
,
Rousseau
,
P. G.
, and
Du Toit
,
C. G.
,
2012
, “
Multi-Sphere Unit Cell Model to Calculate the Effective Thermal Conductivity in Packed Pebble Beds of Mono-Sized Spheres
,”
Nucl. Eng. Des.
,
247
, pp.
183
201
.10.1016/j.nucengdes.2012.03.012
4.
Walton
,
G.
,
2002
, “
Calculation of Obstructed View Factors by Adaptive Integration
,” NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD.
5.
Tanaka
,
S.
,
2008
, “
Exact View-Factor Analysis for Radiation From a Sphere to Another Sphere Linked With a Coaxial Cylinder
,”
Rev. Faculty Maritime Sci., Kobe Univ.
,
5
, pp.
85
92
.10.24546/81001097
6.
Chang
,
Z.
,
Ji
,
J.
,
Huang
,
Y.
,
Wang
,
Z.
, and
Li
,
Q.
,
2017
, “
Monte Carlo Calculation Model for Heat Radiation of Inclined Cylindrical Flames and Its Application
,”
Heat Mass Transfer
,
53
(
7
), pp.
2317
2330
.10.1007/s00231-017-1981-z
7.
Walker
,
T.
,
Xue
,
S. C.
, and
Barton
,
G. W.
,
2010
, “
Numerical Determination of Radiative View Factors Using Ray Tracing
,”
ASME J. Heat Transfer
,
132
(
7
), p.
072702
.10.1115/1.4000974
8.
Mirhosseini
,
M.
, and
Saboonchi
,
A.
,
2011
, “
View Factor Calculation Using the Monte Carlo Method for a 3D Strip Element to Circular Cylinder
,”
Int. Commun. Heat Mass Transfer
,
38
(
6
), pp.
821
826
.10.1016/j.icheatmasstransfer.2011.03.022
9.
He
,
F.
,
Shi
,
J.
,
Zhou
,
L.
,
Li
,
W.
, and
Li
,
X.
,
2018
, “
Monte Carlo Calculation of View Factors Between Some Complex Surfaces: Rectangular Plane and Parallel Cylinder, Rectangular Plane and Torus, Especially Cold-Rolled Strip and W-Shaped Radiant Tube in Continuous Annealing Furnace
,”
Int. J. Therm. Sci.
,
134
, pp.
465
474
.10.1016/j.ijthermalsci.2018.05.050
10.
Vujicic
,
M.
,
Lavery
,
N.
, and
Brown
,
S.
,
2006
, “
Numerical Sensitivity and View Factor Calculation Using the Monte Carlo Method
,”
Proc. Inst. Mech. Eng. Part C, J. Mech. Eng. Sci.
,
220
(
5
), pp.
697
702
.10.1243/09544062JMES139
11.
Lippmann
,
R.
,
1987
, “
An Introduction to Computing With Neural Nets
,”
IEEE ASSP Mag.
,
4
(
2
), pp.
4
22
.10.1109/MASSP.1987.1165576
12.
Li
,
Z.
,
Cheng
,
Z.
,
Xu
,
L.
, and
Li
,
T.
,
1993
, “
Nonlinear Fitting by Using a Neural Net Algorithm
,”
Anal. Chem.
,
65
(
4
), pp.
393
396
.10.1021/ac00052a014
13.
Sheikholeslami
,
M.
,
Gerdroodbary
,
M. B.
,
Moradi
,
R.
,
Shafee
,
A.
, and
Li
,
Z.
,
2019
, “
Application of Neural Network for Estimation of Heat Transfer Treatment of Al2O3-H2O Nanofluid Through a Channel
,”
Comput. Methods Appl. Mech. Eng.
,
344
, pp.
1
12
.10.1016/j.cma.2018.09.025
14.
Yuen
,
W. W.
,
2009
, “
RAD-NNET, a Neural Network Based Correlation Developed for a Realistic Simulation of the Non-Gray Radiative Heat Transfer Effect in Three-Dimensional Gas-Particle Mixtures
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
3159
3168
.10.1016/j.ijheatmasstransfer.2009.01.041
15.
Yuen
,
W. W.
,
Tam
,
W. C.
, and
Chow
,
W. K.
,
2014
, “
Assessment of Radiative Heat Transfer Characteristics of a Combustion Mixture in a Three-Dimensional Enclosure Using RAD-NETT (With Application to a Fire Resistance Test Furnace)
,”
Int. J. Heat Mass Transfer
,
68
, pp.
383
390
.10.1016/j.ijheatmasstransfer.2013.08.009
16.
Yuen
,
W. W.
,
2015
, “
On the Utilization of the Mean Beam Length Concept in the Evaluation of Radiative Heat Transfer in Isothermal Three-Dimensional Non-Gray System
,”
Int. J. Heat Mass Transfer
,
84
, pp.
809
820
.10.1016/j.ijheatmasstransfer.2015.01.080
17.
Wu
,
H.
,
Gui
,
N.
,
Yang
,
X.
,
Tu
,
J.
, and
Jiang
,
S.
,
2020
, “
A Matrix Model of Particle-Scale Radiative Heat Transfer in Structured and Randomly Packed Pebble Bed
,”
Int. J. Therm. Sci.
,
153
, p.
106334
.10.1016/j.ijthermalsci.2020.106334
18.
Howell
,
J. R.
,
Siegel
,
R.
, and
Mengüç
,
M. P.
,
2011
,
Thermal Radiation Heat Transfer
,
Taylor & Francis
, Boca Raton, FL, pp.
155
157
.
19.
Wu
,
H.
,
Gui
,
N.
,
Yang
,
X.
,
Tu
,
J.
, and
Jiang
,
S.
,
2016
, “
Effect of Scale on the Modeling of Radiation Heat Transfer in Packed Pebble Beds
,”
Int. J. Heat Mass Transfer
,
101
, pp.
562
569
.10.1016/j.ijheatmasstransfer.2016.05.090
20.
You
,
E.
,
Sun
,
X.
,
Chen
,
F.
,
Shi
,
L.
, and
Zhang
,
Z.
,
2017
, “
An Improved Prediction Model for the Effective Thermal Conductivity of Compact Pebble Bed Reactors
,”
Nucl. Eng. Des.
,
323
, pp.
95
102
.10.1016/j.nucengdes.2017.07.041
21.
Walker
,
T. J.
,
2014
, “
The Use of Primitives in the Calculation of Radiative View Factors
,” Ph.D. thesis,
University of Sydney
, Sydney, Australia.
22.
Rumelhart
,
D. E.
,
Hinton
,
G. E.
, and
Williams
,
R. J.
,
1986
, “
Learning Representations by Back-Propagating Errors
,”
Nature
,
323
(
6088
), pp.
533
536
.10.1038/323533a0
23.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
,
1989
, “
Multilayer Feedforward Networks Are Universal Approximators
,”
Neural Networks
,
2
(
5
), pp.
359
366
.10.1016/0893-6080(89)90020-8
24.
Wilamowski
,
B. M.
, and
Yu
,
H.
,
2010
, “
Improved Computation for Levenberg-Marquardt Training
,”
IEEE Trans. Neural Networks
,
21
(
6
), pp.
930
937
.10.1109/TNN.2010.2045657
25.
Madsen
,
K.
,
Nielsen
,
H. B.
, and
Tingleff
,
O.
,
2004
,
Methods for Non-Linear Least Squares Problems
, Technical Manuscript,
University of Denmark
, Ballerup, Denmark.
26.
Sun
,
Q.
,
2016
, “
Research and Application of Recommendation Algorithm Based on LM-BP Neural Network
,” Master thesis,
Beijing Jiaotong University
, Beijing, China.
27.
Wilamowski
,
B.
,
2009
, “
Neural Network Architectures and Learning Algorithms
,”
IEEE Ind. Electron. Mag.
,
3
(
4
), pp.
56
63
.10.1109/MIE.2009.934790
You do not currently have access to this content.