Abstract

Nucleation site interaction in pool boiling is well known to cause intermittent bubble growth and departure. Such interactions can cause long-term temporal correlations in spatio-temporal fluctuations of temperature and heat flux and may affect the conditions leading to the onset of boiling crisis. In this study, we check for the presence of such long-term correlations. A multifractal analysis is carried out on heat flux fluctuations recorded in pool boiling experiments under terrestrial and microgravity conditions. The Hurst exponent is shown to progressively decrease as the wall temperature is increased, attaining a value close to 0.5 near the onset of boiling crisis. This trend persists for multiple pressures and levels of bulk subcooling and may serve as an indicator of proximity to the boiling crisis. Similar experiments performed with an identical setup under terrestrial gravity conditions are shown to exhibit similar trends.

References

1.
Carey
,
V. P.
,
2008
,
Liquid-Vapor Phase-Change Phenomena
,
CRC Press
, Boca Raton, FL.
2.
Dhir
,
V. K.
,
1998
, “
Boiling Heat Transfer
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
365
401
.10.1146/annurev.fluid.30.1.365
3.
Groeneveld
,
D. C.
,
Leung
,
L. K. H.
,
Guo
,
Y.
,
Vasic
,
A.
,
El Nakla
,
M.
,
Peng
,
S.
,
Yang
,
J.
, and
Cheng
,
S. C.
,
2005
, “
Lookup Tables for Predicting CHF and Film-Boiling Heat Transfer: Past, Present, and Future
,”
Nucl. Technol.
,
152
(
1
), pp.
87
104
.10.13182/NT152-87
4.
Gogonin
,
I. I.
, and
Kutateladze
,
S. S.
,
1977
, “
Critical Heat Flux as a Function of Heater Size for a Liquid Boiling in a Large Enclosure
,”
J. Eng. Phys.
,
33
(
5
), pp.
1286
1289
.10.1007/BF00860899
5.
Zuber
,
N.
,
1959
, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” Ph.D. thesis,
University of California
, Los Angeles, CA.
6.
Haramura
,
Y.
, and
Katto
,
Y.
,
1983
, “
A New Hydrodynamic Model of Critical Heat Flux, Applicable Widely to Both Pool and Forced Convection Boiling on Submerged Bodies in Saturated Liquids
,”
Int. J. Heat Mass Transfer
,
26
(
3
), pp.
389
399
.10.1016/0017-9310(83)90043-1
7.
Cho
,
H. J.
,
Preston
,
D. J.
,
Zhu
,
Y.
, and
Wang
,
E. N.
,
2017
, “
Nanoengineered Materials for Liquid-Vapour Phase-Change Heat Transfer
,”
Nat. Rev. Mater.
,
2
(
2
), pp.
1
17
.
8.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer-Trans. ASME
,
123
(
6
), pp.
1071
1079
.10.1115/1.1409265
9.
Nikolayev
,
V. S.
, and
Beysens
,
D. A.
,
1999
, “
Boiling Crisis and Non-Equilibrium Drying Transition
,”
Europhys. Lett.
,
47
(
3
), pp.
345
351
.10.1209/epl/i1999-00395-x
10.
Rahman
,
M. M.
,
Ölçeroğlu
,
E.
, and
McCarthy
,
M.
,
2014
, “
Role of Wickability on the Critical Heat Flux of Structured Superhydrophilic Surfaces
,”
Langmuir
,
30
(
37
), pp.
11225
11234
.10.1021/la5030923
11.
Dhillon
,
N. S.
,
Buongiorno
,
J.
, and
Varanasi
,
K. K.
,
2015
, “
Critical Heat Flux Maxima During Boiling Crisis on Textured Surfaces
,”
Nat. Commun.
,
6
(
1
), pp.
1
12
.
12.
Theofanous
,
T. G.
,
Tu
,
J. P.
,
Dinh
,
A. T.
, and
Dinh
,
T. N.
,
2002
, “
The Boiling Crisis Phenomenon Part I: Nucleation and Nucleate Boiling Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
26
(
6–7
), pp.
775
792
.10.1016/S0894-1777(02)00192-9
13.
Theofanous
,
T. G.
,
Dinh
,
T. N.
,
Tu
,
J. P.
, and
Dinh
,
A. T.
,
2002
, “
The Boiling Crisis Phenomenon Part II: Dryout Dynamcs and Burnout
,”
Exp. Therm. Fluid Sci.
,
26
(
6–7
), pp.
793
810
.10.1016/S0894-1777(02)00193-0
14.
Dhir
,
V. K.
,
2006
, “
Mechanistic Prediction of Nucleate Boiling Heat Transfer–Achievable or a Hopeless Task?
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
1
), pp.
1
12
.10.1115/1.2136366
15.
Sadasivan
,
P.
,
Unal
,
C.
, and
Nelson
,
R.
,
1995
, “
Nonlinear Aspects of High Heat Flux Nucleate Boiling Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
117
(
4
), pp.
981
989
.10.1115/1.2836320
16.
Sadasivan
,
P.
,
Unal
,
C.
, and
Nelson
,
R.
,
1995
, “
Nonlinear Aspects of High Heat Flux Nucleate Boiling Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
1
(
November
), pp.
1
9
.
17.
Kenning
,
D.
,
Golobič
,
I.
,
Xing
,
H.
,
Bašelj
,
M.
,
Lojk
,
V.
, and
von Hardenberg
,
J.
,
2006
, “
Mechanistic Models for Pool Nucleate Boiling Heat Transfer: Input and Validation
,”
Heat Mass Transfer/Waerme- Und Stoffuebertragung
,
42
(
6
), pp.
511
527
.10.1007/s00231-005-0648-3
18.
McSharry
,
P. E.
,
Ellepola
,
J. H.
,
von Hardenberg
,
J.
,
Smith
,
L. A.
,
Kenning
,
D. B. R.
, and
Judd
,
K.
,
2002
, “
Spatio-Temporal Analysis of Nucleate Pool Boiling: Identification of Nucleation Sites Using Non Orthogonal Empirical Functions
,”
Int. J. Heat Mass Transfer
,
45
(
2
), pp.
237
253
.10.1016/S0017-9310(01)00152-1
19.
Shoji
,
M.
,
2004
, “
Studies of Boiling Chaos: A Review
,”
Int. J. Heat Mass Transfer
,
47
(
6–7
), pp.
1105
1128
.10.1016/j.ijheatmasstransfer.2003.09.024
20.
Zhang
,
L.
, and
Shoji
,
M.
,
2003
, “
Nucleation Site Interaction in Pool Boiling on the Artificial Surface
,”
Int. J. Heat Mass Transfer
,
46
(
3
), pp.
513
522
.10.1016/S0017-9310(02)00291-0
21.
Sathyamurthi
,
V.
,
Banerjee
,
D.
,
Sakamoto
,
H.
, and
Kim
,
J.
,
2008
, “
Measurement of the Fractal Order of Wall Void Fraction During Nucleate Boiling
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
207
218
.10.1016/j.ijheatfluidflow.2007.03.009
22.
Skokov
,
V. N.
,
Koverda
,
V. P.
,
Reshetnikov
,
A. V.
,
Skripov
,
V. P.
,
Mazheiko
,
N. A.
, and
Vinogradov
,
A. V.
,
2003
, “
1/f Noise and Self-Organized Criticality in Crisis Regimes of Heat and Mass Transfer
,”
Int. J. Heat Mass Transfer
,
46
(
10
), pp.
1879
1883
.10.1016/S0017-9310(02)00475-1
23.
Lloveras
,
P.
,
Salvat-Pujol
,
F.
,
Truskinovsky
,
L.
, and
Vives
,
E.
,
2012
, “
Boiling Crisis as a Critical Phenomenon
,”
Phys. Rev. Lett.
,
108
(
21
), pp.
25
28
.
24.
Skokov
,
V. N.
,
Koverda
,
V. P.
, and
Reshetnikov
,
A. V.
,
1999
, “
Self-Organization of a Critical State and 1/fα-Fluctuations at Film Boiling
,”
Phys. Lett. A
,
263
(
4–6
), pp.
430
433
.10.1016/S0375-9601(99)00758-6
25.
Zhang
,
L.
,
Seong
,
J. H.
, and
Bucci
,
M.
,
2019
, “
Percolative Scale-Free Behavior in the Boiling Crisis
,”
Phys. Rev. Lett.
,
122
(
13
), p.
134501
.10.1103/PhysRevLett.122.134501
26.
Charignon
,
T.
,
Lloveras
,
P.
,
Chatain
,
D.
,
Truskinovsky
,
L.
,
Vives
,
E.
,
Beysens
,
D.
, and
Nikolayev
,
V. S.
,
2015
, “
Criticality in the Slowed-Down Boiling Crisis at Zero Gravity
,”
Phys. Rev. E,
91
(
5
), pp.
1
10
.
27.
Sreenivasan
,
K. R.
,
1991
, “
Fractals and Multifractals in Fluid Turbulence
,”
Annu. Rev. Fluid Mech.
,
23
(
1
), pp.
539
600
.10.1146/annurev.fl.23.010191.002543
28.
Frisch
,
U.
, and
Parisi
,
G.
,
1980
, “
Fully Developed Turbulence and Intermittency
,”
New York Acad. Sci., Ann.
,
357
(
1
), pp.
359
367
.10.1111/j.1749-6632.1980.tb29703.x
29.
Stewart
,
H. B.
, and
Lansbury
,
A. N.
,
1990
, “
Forecasting Catastrophe by Exploiting Chaotic Dynamics
,”
Applied Chaos
,
J.
Kim
and
J.
Stringer
, eds.,
Wiley
, Hoboken, NJ, pp.
393
410
.
30.
Nair
,
V.
, and
Sujith
,
R. I.
,
2014
, “
Multifractality in Combustion Noise: Predicting an Impending Combustion Instability
,”
J. Fluid Mech.
,
747
(
x
), pp.
635
655
.10.1017/jfm.2014.171
31.
NASA
, “
NASA Physical Sciences Informatics System
,” NASA, Washington, DC, accessed June 14, 2021, https://psi.nasa.gov
32.
Raj
,
R.
,
Kim
,
J.
, and
McQuillen
,
J.
,
2009
, “
Subcooled Pool Boiling in Variable Gravity Environments
,”
ASME J. Heat Transfer-Trans. ASME
,
131
(
9
), p. 091502.10.1115/1.3122782
33.
Raj
,
R.
, and
Kim
,
J.
,
2010
, “
Heater Size and Gravity Based Pool Boiling Regime Map: Transition Criteria Between Buoyancy and Surface Tension Dominated Boiling
,”
ASME J. Heat Transfer-Trans. ASME
,
132
(
9
), p.
091503
.10.1115/1.4001635
34.
Raj
,
R.
,
Kim
,
J.
, and
McQuillen
,
J.
,
2012
, “
Pool Boiling Heat Transfer on the International Space Station: Experimental Results and Model Verification
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
10
), p.
101504
.10.1115/1.4006846
35.
Kim
,
J.
, and
Raj
,
R.
,
2014
, “
Gravity and Heater Size Effects on Pool Boiling Heat Transfer
,” NASA, Washington, DC, Report No. NASA/CR–2014–216672.
36.
Feder
,
J.
,
2013
,
Fractals
,
Springer Science & Business Media
, Berlin, Germany.
37.
Kantelhardt
,
J. W.
,
Koscielny-Bunde
,
E.
,
Rego
,
H. H. A.
,
Havlin
,
S.
, and
Bunde
,
A.
,
2001
, “
Detecting Long-Range Correlations With Detrended Fluctuation Analysis
,”
Phys. A: Stat. Mech. Its Appl.
,
295
(
3–4
), pp.
441
454
.10.1016/S0378-4371(01)00144-3
38.
Kantelhardt
,
J. W.
,
Zschiegner
,
S. A.
,
Koscielny-Bunde
,
E.
,
Havlin
,
S.
,
Bunde
,
A.
, and
Stanley
,
H. E.
,
2002
, “
Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series
,”
Phys. A: Stat. Mech. Its Appl.
,
316
(
1–4
), pp.
87
114
.10.1016/S0378-4371(02)01383-3
You do not currently have access to this content.