Abstract

This paper quantifies the pool boiling performance of R514A, R1224 yd(Z), and R1336mzz(E) on a flattened, horizontal Turbo-ESP surface for air-conditioning applications for heat fluxes between roughly 10 kWm−2 and 100 kWm−2. R514A, R1224 yd(Z), and R1336mzz(E) are replacements for R123 and R245fa. All of these replacement refrigerants had measured boiling heat fluxes that were larger than that for R123 for most heat fluxes. For example, for heat fluxes between 10 kWm−2 and 80 kWm−2, R514A, R1224 yd(Z), and R1336mzz(E) exhibited average heat fluxes that were 30%, 57%, and 13% larger than that for R123 for a saturation temperature of 277.6 K. For the same comparison done at a saturation temperature of 298.2 K, the average heat flux for R514A was roughly 43% larger than that for R123. A pool boiling model, that was previously developed for pure and mixed refrigerants on the Turbo-ESP surface, was compared to the measured boiling performance. The model predicted the measured superheats of the mixed refrigerants and the single-component refrigerants to within ± 0.7 K and ± 0.45 K, respectively.

References

1.
EU
,
2014
, “
Regulation (Eu) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on Fluorinated Greenhouse Gases and Repealing Regulation (EC) No 842/2006
,” Official Journal of the European Union, L 150/195, accessed Mar. 10, 2021, http://data.europa.eu/eli/reg/2014/517/oj
2.
UNEP
,
2016
, “
Amendment to the Montreal Protocol on Substances That Deplete the Ozone Layer, Kigali
,” accessed July 25, 2017, https://treaties.un.org/doc/Publication/CN/2016/CN.872.2016-Eng.pdf
3.
Montreal Protocol,
1987
,
Montreal Protocol on Substances That Deplete the Ozone Layer
,
United Nations (UN)
,
New York
. (1987 with subsequent amendments).
4.
World Meteorological Organization (WMO),
2018
,
Scientific Assessment of Ozone Depletion
,
WMO
,
Geneva, Switzerland
, Report No. 58.
5.
Kontomaris
,
K.
,
2014
, “
HFO-1336mzz-Z: High Temperature Chemical Stability and Use as a Working Fluid in Organic Rankine Cycles
,” International Refrigeration and Air Conditioning Conference, Purdue University, July 14–17, Paper
1525
.
6.
Yang
,
J.
,
Ye
,
Z.
,
Yu
,
B.
,
Ouyang
,
H.
, and
Chen
,
J.
,
2019
, “
Simultaneous Experimental Comparison of low-GWP Refrigerants as Drop-in Replacements to R245fa for Organic Rankine Cycle Application: R1234ze(Z), R1233zd(E), and R1336mzz(E
),”
Energy
,
173
, pp.
721
731
.10.1016/j.energy.2019.02.054
7.
Kontomaris
,
K.
,
2019
,
Private Communications
,
Chemours
,
Wilmington, DE
.
8.
Myhre
,
G.
,
Shindell
,
D.
,
Bréon
,
F.-M.
,
Collins
,
W.
,
Fuglestvedt
,
J.
,
Huang
,
J.
,
Koch
,
D.
,
Lamarque
,
J.-F.
,
Lee
,
D.
,
Mendoza
,
B.
,
Nakajima
,
T.
,
Robock
,
A.
,
Stephens
,
G.
,
Takemura
,
T.
, and
Zhang
,
H.
,
2013
, “
Anthropogenic and Natural Radiative Forcing Supplementary Material
,”
Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
,
T. F.
Stocker
,
D.
Qin
,
G.-K.
Plattner
,
M.
Tignor
,
S. K.
Allen
,
J.
Boschung
,
A.
Nauels
,
Y.
Xia
,
V.
Bex
, and
P. M.
Midgley
, eds, Wolverine Tube, Inc., Decatur, AL.www.climatechange2013.org and www.ipcc.ch
9.
Tokuhashi
,
K.
,
Uchimaru
,
T.
,
Takizawa
,
K.
, and
Kondo
,
S.
,
2018
, “
Rate Constants for the Reactions of OH Radical With the (E) /(Z) Isomers of CF 3 CF = CHCl and CHF 2 CF = CHCl
,”
J. Phys. Chem. A
, 122(12), pp. 3120–3127.10.1021/acs.jpca.7b11923
10.
Rogers
,
J. S.
,
1961
, “
Study of Low-Fin Tube 1929-1960
,” Wolverine Tube, Inc, Decatur, AL, Internal Report Neshan-1, p.
8
.
11.
Kedzierski
,
M. A.
,
1999
, “
Ralph L. Webb: A Pioneering Proselytizer for Enhanced Heat Transfer
,”
J. Enhanced Heat Transfer
,
6
(
2–4
), pp.
71
78
.10.1615/JEnhHeatTransf.v6.i2-4.20
12.
Webb
,
R. L.
,
1972
, “
Heat Transfer Surface Having a High Boiling Heat Transfer Coefficient
,” U.S. Patent No. 3,696,861.
13.
Gorgy
,
E.
,
2016
, “
Nucleate Boiling of low-GWP Refrigerants on Highly Enhanced Tube Surface
,”
Int. J. Heat Mass Transfer
,
96
, pp.
660
6
.10.1016/j.ijheatmasstransfer.2016.01.057
14.
Kedzierski
,
M. A.
, and
Lin
,
L.
,
2020
, “
Pool Boiling of R515A, R1234ze(E), and R1233zd(E) on a Reentrant Cavity Surface
,”
Int. J. Heat Mass Transfer
,
161
, p.
120252
10.1016/j.ijheatmasstransfer.2020.120252
15.
Kedzierski
,
M. A.
, and
Lin
,
L.
,
2020
, “
Effect of IF-WS2 Nanolubricant on R134a Boiling on a Reentrant Cavity Surface
,”
I. J. Trans. Phenom.
,
15
(
2
), pp.
137
145
. https://www.oldcitypublishing.com/journals/ijtp-home/
16.
Kedzierski
,
M. A.
, and
Lin
,
L.
,
2019
, “
Pool Boiling of HFO-1336mzz(Z) on a Reentrant Cavity Surface
,”
Int. J. Refrig.
,
104
, pp.
476
483
.10.1016/j.ijrefrig.2019.02.022
17.
Kedzierski
,
M. A.
,
Lin
,
L.
, and.
Kang
,
D. Y.
,
2018
, “
Pool Boiling of Low GWP Replacements for R134a on a Reentrant Cavity Surface
,”
ASME J Heat Trans
,
140
(
12
), p. 02150210.1115/1.4040783.
18.
Longo
,
G. A.
,
Mancin
,
S.
,
Righetti
,
G.
, and
Zilio
,
C.
,
2019
, “
R1224 yd(Z) Flow Boiling Inside a Mini Microfin Tube
,”
Proceedings of the 25th IIR International Congress of Refrigeration
, Montréal, QC, Canada, Aug. 24–30, Paper No.
1200
.https://iifiir.org/en/fridoc/r1224yd-z-flow-boiling-inside-a-mini-microfin-tube-34697
19.
Tanaka
,
K.
,
Ishikawa
,
J.
, and
Kontomaris
,
K. K.
,
2017
, “
Thermodynamic Properties of HFO-1336mzz(E) (Trans-1,1,1,4,4,4-Hexafluoro-2-Butene) at Saturation Conditions
,”
Int. J. Refrig.
,
82
, pp.
283
287
.10.1016/j.ijrefrig.2017.06.012
20.
Tanaka
,
K.
,
Ishikawa
,
J.
, and
Kontomaris
,
K. K.
,
2017
, “
pρT Property of HFO-1336mzz(E) (Trans -1,1,1,4,4,4-Hexafluoro-2-Butene)
,”
J Chem Eng. Data.
,
62
(
8
), pp.
2450
2453
.
21.
Majurin
,
J.
,
Sorenson
,
E.
,
Steinke
,
D.
, and
Herried
,
M.
,
2017
, “
Chemical Stability Assessments of R-514A and R-1233zd(E)
,”
ASHRAE Winter Conf
, Las Vegas, NV, June 28–July 2, Paper No. 234.
22.
Kedzierski
,
M. A.
,
2002
, “
Use of Fluorescence to Measure the Lubricant Excess Surface Density During Pool Boiling
,”
Int. J. Refrig.
,
25
(
8
), pp.
1110
1122
.10.1016/S0140-7007(02)00005-1
23.
Kedzierski
,
M. A.
,
2001
, “
Use of Fluorescence to Measure the Lubricant Excess Surface Density During Pool Boiling
,” U.S. Department of Commerce, Washington, DC, NIST Internal Report, No. NISTIR 6727.
24.
Kaul
,
M. P.
,
Kedzierski
,
M. A.
, and
Didion
,
D. A.
,
1996
, “
Horizontal Flow Boiling of Alternative Refrigerants Within a Fluid Heated Micro-Fin Tube
,”
Process, Enhanced, and Multiphase Heat Transfer: A Festschrift for A. E. Bergles
,
R. M.
Manglik
, and
A. D.
Kraus
, eds.,
Begell House, Inc
,
New York
, pp.
167
173
.
25.
Darabi
,
J. D.
,
Ohadi
,
M. M.
,
Fanni
,
M. A.
,
Dessiatoun
,
S. V.
, and
Kedzierski
,
M. A.
,
1999
, “
Effect of Heating Boundary Conditions on Pool Boiling Experiments
,”
HVACR Res.
,
5
(
4
), pp.
283
296
.10.1080/10789669.1999.10391239
26.
Kedzierski
,
M. A.
,
1995
, “
Calorimetric and Visual Measurements of R123 Pool Boiling on Four Enhanced Surfaces
,” U.S. Department of Commerce, Washington, D.C., NIST Internal Report, No. NISTIR 5732.
27.
Kedzierski
,
M. A.
, and
Lin
,
L.
,
2020
, “
Pool Boiling of R514A, R1224 yd(Z), and R1336mzz(E) on a Reentrant Cavity Surface; Extensive Measurement and Analysis
,” U.S. Department of Commerce, Washington, DC, NIST Internal Report, No. NIST Technical Note 2125.
28.
Belsley
,
D. A.
,
Kuh
,
E.
, and
Welsch
,
R. E.
,
1980
,
Regression Diagnostics: Identifying Influential Data and Sources of Collinearity
,
Wiley
,
New York
.
29.
Kedzierski
,
M. A.
, and
Lin
,
L.
,
2018
, “
Pool Boiling of HFO-1336mzz(Z) on a Reentrant Cavity Surface; Extensive Measurement and Analysis
,” U.S. Department of Commerce, Washington, DC, NIST Internal Report, No. NIST Technical Note
2022
. 10.6028/NIST.TN.2022
30.
Shock
,
R. A. W.
,
1982
, “
Boiling in Multicomponent Fluids
,”
Multiphase Sci. Technol.
1, pp.
281
386
.10.1615/MultScienTechn.v1.i1-4.30
31.
Stokes
,
G. G.
,
1880
,
Mathematical and Physical Papers
,
1
,
Cambridge University Press
,
London
, p.
1880
.
32.
Fritz
,
W.
,
1935
, “
Berechnung Des Maximalvolume Von Dampfblasen
,”
Physikalische Z.
,
36
, pp.
379
388
.http://ci.nii.ac.jp/naid/10015401785/en/
33.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
,
NIST Standard Reference Database 23 (REFPROP), Version 10
,
National Institute of Standards and Technology
,
Boulder, CO
.
34.
Huber
,
M.
,
2020
,
Private Communications
,
National Institute of Standards and Technology
,
Boulder, CO
.
35.
Akasaka
,
R.
,
2020
,
Private Communication
,
Kyushu Sangyo University
,
Fukuoka Japan
.
36.
Chemours,
2019
,
Private Communications
,
Wilmington
,
DE
.
37.
Li
,
H.
, and
Hrnjak
,
P.
,
2021
, “
Heat Transfer Coefficient, Pressure Gradient, and Flow Patterns of R1234yf Evaporating in Microchannel Tube
,”
ASME J. Heat Trans.
, 143(4), p. 042501.10.1115/1.4049635
38.
Alam
,
J.
,
Yamaguchi
,
K.
,
Hori
,
Y.
,
Kariya
,
K.
, and
Miyara
,
A.
,
2019
, “
Measurement of Thermal Conductivity and Viscosity of Cis-1-Chloro-2,3,3,3-Tetrafluoropropene (R-1224 yd(Z))
,”
Int. J. Refrig.
,
104
, pp.
221
228
.10.1016/j.ijrefrig.2019.05.033
39.
Kondou
,
C.
,
Higashi
,
Y.
, and
Iwasaki
,
S.
,
2019
, “
Surface Tension and Parachor Measurement of Low-Global Warming Potential Working Fluid Cis-1-Chloro-2,3,3,3-Tetrafluoropropene (R1224 yd(Z))
,”
J. Chem. Eng. Data
,
64
(
12
), pp.
5462
5468
.10.1021/acs.jced.9b00613
You do not currently have access to this content.