Abstract

This paper investigates the augmentation of heat transfer during pool boiling of a novel aqueous binary mixture of surfactants. The surfactants used were sodium dodecyl sulfate (SDS) (anionic), centrimonium bromide (CTAB) (cationic), and nicotine (nonionic). The aqueous binary mixtures SDS–CTAB, CTAB–nicotine, and SDS–nicotine were prepared on the volume percentage basis. A reduction in surface tension was attained by SDS–CTAB, CTAB–nicotine, and SDS–nicotine aqueous mixtures compared to its individual aqueous surfactant solutions at their optimum concentrations. The most significant surface tension result was obtained by the novel SDS–nicotine aqueous binary system at 25:75 volume percentages. The heat transfer augmentation was investigated by studying the single bubble dynamic in the aqueous SDS–nicotine mixture. The investigation was conducted at two values of heat fluxes to probe the effect of heat flux on bubble dynamics. A significant decrement in the bubble departure diameter and a substantial increment in the release frequency was observed for the SDS–nicotine aqueous mixture at both heat fluxes. The heat transfer coefficient was found to be increased by 36.32% and 58.67% compared to saturated water at low and high heat flux, respectively.

References

1.
Rohsenow
,
W.
,
1951
, “
A Method of Co-Relating Heat Transfer Data From Surface Boiling of Liquid
,”
Technical Report
(Heat Transfer Laboratory, Massachusetts Institute of Technology, Cambridge, MA).http://hdl.handle.net/1721.1/61431
2.
Han
,
Y.
, and
Griffith
,
P.
,
1965
, “
The Mechanism of Heat Transfer in Nucleate Pool Boiling—Part I
,”
Int. J. Heat Mass Transfer
,
8
(
6
), pp.
887
904
.10.1016/0017-9310(65)90073-6
3.
Stralen
,
S.
,
1966
, “
The Mechanism of Nucleate Boiling in Pure Liquids and in Binary Mixtures—Part II
,”
Int. J. Heat Mass Transfer
,
9
, pp.
1021
1046
.10.1016/0017-9310(66)90026-3
4.
Cole
,
R.
, and
Shulman
,
H.
,
1966
, “
Bubble Growth Rates at High Jakob Numbers
,”
Int. J. Heat Mass Transfer
,
9
(
12
), pp.
1377
1390
.10.1016/0017-9310(66)90135-9
5.
Mikic
,
B. B.
,
Rohsenow
,
W. M.
, and
Griffith
,
P.
,
1970
, “
On Bubble Growth Rate
,”
Int. J. Heat Mass Transfer
,
13
(
4
), pp.
657
666
.10.1016/0017-9310(70)90040-2
6.
Lesage
,
F.
, and
Marois
,
F.
,
2013
, “
Experimental and Numerical Analysis of Quasistatic Bubble Size and Shape Characteristics at Detachment
,”
Int. J. Heat Mass Transfer
,
64
, pp.
53
69
.10.1016/j.ijheatmasstransfer.2013.04.019
7.
Najim
,
A.
, and
Acharya
,
A.
,
2014
, “
Experimental Study of Effect of Nucleation Site Size on Bubble Dynamics During Nucleate Pool Boiling Heat Transfer
,”
Appl. Mech. Mater.
,
592–594
, pp.
1596
1600
.10.4028/www.scientific.net/AMM.592-594.1596
8.
Yang
,
Y.
, and
Maa
,
J.
,
2001
, “
On the Criteria of Nucleate Pool Boiling Enhancement by Surfactant Addition to Water
,”
Chem. Eng. Res. Des.
,
79
(
4
), pp.
409
416
.10.1205/026387601750282337
9.
Wasekar
,
V.
, and
Manglik
,
R.
,
2002
, “
Influence of Additive Molecular Weight and Ionic Nature on the Pool Boiling Performance of Aqueous Surfactant Solutions
,”
Int. J. Heat Mass Transfer
,
45
(
3
), pp.
483
493
.10.1016/S0017-9310(01)00174-0
10.
Zhang
,
J.
, and
Manglik
,
R.
,
2005
, “
Nucleate Pool Boiling of Aqueous Polymer Solutions on a Cylindrical Heater
,”
J. Non-Newtonian Fluid Mech.
,
125
(
2–3
), pp.
185
196
.10.1016/j.jnnfm.2004.12.001
11.
Ding
,
G.
,
Peng
,
H.
, and
Hu
,
H.
,
2011
, “
Effect of Surfactant Additives on Nucleate Pool Boiling Heat Transfer of Refrigerant Based Nanofluid
,”
Expt. Therm. Fluid Sci.
,
35
(
6
), pp.
960
970
.10.1016/j.expthermflusci.2011.01.016
12.
Inoue
,
T.
, and
Monde
,
M.
,
2012
, “
Enhancement of Nucleate Pool Boiling Heat Transfer in Ammonia-Water Mixtures With a Surface-Active Agent
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3395
3399
.10.1016/j.ijheatmasstransfer.2012.03.004
13.
Gajghate
,
S.
,
Acharya
,
A.
, and
Pise
,
A.
,
2014
, “
Experimental Study of Aqueous Ammonium Chloride in Pool Boiling Heat Transfer
,”
Exp. Heat Transfer
,
27
(
2
), pp.
113
123
.10.1080/08916152.2012.757673
14.
Cho
,
H.
,
Mizerak
,
J.
, and
Wang
,
E.
,
2015
, “
Turning Bubbles on and Off During Boiling Using Charged Surfaces
,”
Nat. Commun.
,
6
(
8599
), pp.
1
3
.10.1038/ncomms9599
15.
Wang
,
J.
,
Li
,
F.
, and
Li
,
X.
,
2016
, “
Bubble Explosion in Pool Boiling Around a Heated Wire in Surfactant Solution
,”
Int. J. Heat Mass Transfer
,
99
, pp.
569
575
.10.1016/j.ijheatmasstransfer.2016.03.111
16.
Wang
,
J.
,
Li
,
F.
, and
Li
,
X.
,
2016
, “
On the Mechanism of Boiling Heat Transfer Enhancement by Surfactant Addition
,”
Int. J. Heat Mass Transfer
,
101
, pp.
800
806
.10.1016/j.ijheatmasstransfer.2016.05.121
17.
Abe
,
M.
, and
Scamehorn
,
J.
,
2005
,
Mixed Surfactant Systems
, 2nd ed.,
Marcel Dekker
,
New York
.
18.
Jadidi
,
N.
,
Adib
,
B.
, and
Malihi
,
F. B.
,
2013
, “
Synergism and Performance Optimization in Liquid Detergents, Containing Binary Mixtures of Anionic–Nonionic, and Anionic–Cationic Surfactants
,”
J. Surfactants Deterg.
,
16
(
1
), pp.
115
121
.10.1007/s11743-012-1371-y
19.
Ravikumar
,
S.
,
Jha
,
J.
,
Sarkar
,
I.
,
Pal
,
S.
, and
Chakraborty
,
S.
,
2014
, “
Mixed-Surfactant Additives for Enhancement of Air Atomized Spray Cooling of Hot Steel Plate
,”
Exp. Therm. Fluid Sci.
,
55
, pp.
210
220
.10.1016/j.expthermflusci.2014.03.007
20.
Najim
,
A.
,
More
,
V.
,
Thorat
,
A.
,
Patil
,
S.
, and
Savale
,
S.
,
2017
, “
Enhancement of Pool Boiling Heat Transfer Using Innovative Non-Ionic Surfactant on a Wire Heater
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
375
380
.10.1016/j.expthermflusci.2016.11.039
21.
Cheng
,
L.
,
Mewes
,
D.
, and
Luke
,
A.
,
2007
, “
Boiling Phenomenon With Surfactants and Polymeric Additives: A State-of-the-Art Review
,”
Int. J. Heat Mass Transfer
,
50
(
13–14
), pp.
2744
2771
.10.1016/j.ijheatmasstransfer.2006.11.016
22.
Yuan
,
Z.
, and
Herold
,
K.
,
2001
, “
Surface Tension of Pure Water and Aqueous Lithium Bromide With 2-Ethyl-Hexanol
,”
Appl. Therm. Eng.
,
21
(
8
), pp.
881
897
.10.1016/S1359-4311(00)00088-0
23.
Najim
,
A.
, and
Pise
,
S.
,
2016
, “
Boiling Heat Transfer Enhancement With Surfactant on the Tip of a Submerged Hypodermic Needle as Nucleation site
,”
Appl. Therm. Eng.
,
103
, pp.
989
995
.10.1016/j.applthermaleng.2016.05.001
24.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
,
Sher
,
I.
, and
Segal
,
Z.
,
2006
, “
Bubble Growth in Saturated Pool Boiling in Water and Surfactant Solution
,”
Int. J. Multiphase Flow
,
32
(
2
), pp.
159
182
.10.1016/j.ijmultiphaseflow.2005.10.002
25.
Holman
,
J.
,
2007
,
Experimental Methods for Engineers
, 7th ed.,
Tata McGraw-Hill
,
New Delhi, India
.
26.
Rosen
,
M.
, and
Hua
,
X.
,
1982
, “
Synergism in Binary Mixtures of Surfactants: II Some Experimental Data
,”
J. Am. Oil Chem. Soc.
,
59
(
12
), pp.
582
585
.10.1007/BF02636329
27.
Kume
,
G.
,
Gallotti
,
M.
, and
Nunes
,
G.
,
2008
, “
Review on Anionic/Cationic Surfactant Mixtures
,”
J. Surfactant Deterg.
,
11
(
1
), pp.
1
11
.10.1007/s11743-007-1047-1
28.
Stellner
,
K.
,
Amante
,
J.
,
Scamehorn
,
J.
, and
Harwell
,
J.
,
1988
, “
Precipitation Phenomena in Mixtures of Anionic and Cationic Surfactants in Aqueous Solutions
,”
J. Colloid Interface Sci.
,
123
(
1
), pp.
186
200
.10.1016/0021-9797(88)90235-4
29.
Ravikumar
,
S.
,
Jha
,
J.
,
Sarkar
,
I.
,
Mohapatra
,
S.
,
Pal
,
S.
, and
Chakraborty
,
S.
,
2013
, “
Achievement of Ultrafast Cooling Rate in a Hot Steel Plate by Air-Atomized Spray With Different Surfactant Additives
,”
Exp. Therm. Fluid Sci.
,
50
, pp.
79
89
.10.1016/j.expthermflusci.2013.05.007
30.
Ivey
,
H.
,
1967
, “
Relationships Between Bubble Frequency, Departure Diameter, and Rise Velocity in Nucleate Boiling
,”
Int. J. Heat Mass Transfer
,
10
(
8
), pp.
1023
1040
.10.1016/0017-9310(67)90118-4
You do not currently have access to this content.