Abstract

In many areas of engineering, radiation heat transfer plays an important role and it is of great importance the knowledge of the thermal radiative properties of the surfaces involved. Radiation properties of solid materials are highly dependent on surface characteristics, e.g., surface roughness, surface damage, oxide layers, and deposited thin films, and cannot be assumed as those of pure materials, typically referred to optically smooth surfaces (OS). An experimental investigation of the thermal emittance of some metals (nickel, titanium, silver, and stainless steel) is presented. Experiments were conducted by using a radiometric apparatus able to measure the total normal emittance under different temperature and pressure conditions. The aim of this paper was to identify the separate roles of surface microgeometry alterations (surface roughness), surface damage, and surface coatings (i.e., presence of either thin films deposited onto a smooth surface or oxide layers formed on both smooth and rough surfaces) by undertaking carefully selected sets of experiments covering a relatively large temperature range.

References

1.
Worthing
,
A. G.
,
1940
, “
Temperature Radiation Emissivities and Emittances
,”
J. Appl. Phys.
,
11
(
6
), pp.
421
437
.10.1063/1.1712790
2.
Humphries
,
J.
,
1974
, “
On the Thermal Emittance of Stainless Steels
,”
J. Br. Nucl. Energy Soc.
,
13
(
3
), pp.
271
276
.
3.
Edwards
,
D. K.
,
1969
, “
Radiative Transfer Characteristics of Materials
,”
ASME J. Heat Transfer
,
91
(
1
), pp.
1
15
.10.1115/1.3580108
4.
Siegel
,
R.
, and
Howell
,
J. R.
,
1972
,
Thermal Radiation Heat Transfer
,
McGraw-Hill
,
New York
.
5.
Davis
,
H.
,
1954
, “
The Reflection of Electromagnetic Waves From a Rough Surface
,”
Proc. Inst. Elec. Eng. London
,
101
(
7
), pp.
209
214
.10.1049/pi-4.1954.0025
6.
Bennett
,
H. E.
, and
Porteus
,
J. O.
,
1961
, “
Relation Between Surface Roughness and Specular Reflectance at Normal Incidence
,”
J. Opt. Soc. Am.
,
51
(
2
), pp.
123
129
.10.1364/JOSA.51.000123
7.
Sparrow
,
E. M.
, and
Lin
,
S. H.
,
1962
, “
Absorption of Thermal Radiation in a V-Groove Cavity
,”
Int. J. Heat Mass Transfer
,
5
(
11
), pp.
1111
1115
.10.1016/0017-9310(62)90064-9
8.
Birkebak
,
R. C.
,
Sparrow
,
E. M.
,
Eckert
,
E. R. G.
, and
Ramsey
,
J. W.
,
1964
, “
Effect of Surface Roughness on the Total Hemispherical and Specular Reflectance of Metallic Surfaces
,”
ASME J. Heat Transfer
,
86
(
2
), pp.
193
199
.10.1115/1.3687093
9.
Birkebak
,
R. C.
, and
Eckert
,
E. R. G.
,
1965
, “
Effect of Roughness of Metal Surfaces on Angular Distribution of Monochromatic Reflected Radiation
,”
ASME J. Heat Transfer
,
87
(
1
), pp.
85
93
.10.1115/1.3689061
10.
Torrance
,
K. E.
, and
Sparrow
,
E. M.
,
1967
, “
Directional Emittance of an Electric Nonconductor as a Function of Surface Roughness and Wavelength
,”
Int. J. Heat Mass Transfer
,
10
(
12
), pp.
1709
1716
.10.1016/0017-9310(67)90040-3
11.
Py
,
B.
,
1967
, “
Rayonnement Thermique Des Metaux Microrugueux ou Disperses
,”
Int. J. Heat Mass Transfer
,
10
(
12
), pp.
1735
1742
.10.1016/0017-9310(67)90043-9
12.
Agababov
,
S. G.
,
1968
, “
Effect of the Roughness of the Surface of a Solid Body on Its Radiation Properties and Methods for Their Experimental Determination
,”
Teplofiz. Vys. Temp.
,
6
, pp.
78
87
.
13.
Sacadura
,
J. F.
,
1972
, “
Influence de la Rugosité Sur le Rayonnement Thermique Émis Par Les Surfaces Opaques: Essai de Modèle
,”
Int. J. Heat Mass Transfer
,
15
(
8
), pp.
1451
1465
.10.1016/0017-9310(72)90003-8
14.
Birkebak
,
R. C.
, and
Abdulkadir
,
A.
,
1976
, “
Random Rough Surface Model for Spectral Directional Emittance of Rough Metal Surfaces
,”
Int. J. Heat Mass Transfer
,
19
(
9
), pp.
1039
1043
.10.1016/0017-9310(76)90187-3
15.
Abdulkadir
,
A.
, and
Birkebak
,
R.
,
1977
, “
Effects of Large Pyramidal Surface Roughness on Spectral Directional Emittance
,”
Wärme Stoffübertragung
,
10,
pp.
23
32
.10.1007/BF02570664
16.
Wörner
,
B.
, and
Neuer
,
G.
,
1979
, “
Investigation of the Thermal-Radiation Properties of Technical Rough Metal Surfaces
,”
High Temp. High Press.
11
(
4
), pp.
383
391
.
17.
Sacadura
,
J. F.
,
1981
, “
Emissivité Monochromatique Directionelle D'un Acier Inoxydable de Type 304 L Compte Tenu de Diffférents États de Surface Microrugueux
,”
High Temp. High Press.
13
(
6
), pp.
623
636
.
18.
Sabuga
,
W.
, and
Todtenhaupt
,
R.
,
2001
, “
Effect of Roughness on the Emissivity of the Precious Metals Silver, Gold, Palladium, Platinum, Rhodium, and Iridium
,”
High Temp. High Press.
33
(
3
), pp.
261
269
.10.1068/htwu371
19.
Zhou
,
Y. H.
, and
Zhang
,
Z. M.
,
2003
, “
Radiative Properties of Semitransparent Silicon Wafers With Rough Surfaces
,”
ASME J. Heat Transfer
,
125
(
3
), pp.
462
470
.10.1115/1.1565089
20.
Wen
,
C. D.
, and
Mudawar
,
I.
,
2004
, “
Emissivity Characteristics of Roughened Aluminum Alloy Surfaces and Assessment of Multispectral Radiation Thermometry (MRT) Emissivity Models
,”
Int. J. Heat Mass Transfer
,
47
(
17–18
), pp.
3591
3605
.10.1016/j.ijheatmasstransfer.2004.04.025
21.
Wen
,
C. D.
, and
Mudawar
,
I.
,
2006
, “
Modeling the Effects of Surface Roughness on the Emissivity of Aluminum Alloys
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4279
4289
.10.1016/j.ijheatmasstransfer.2006.04.037
22.
Fu
,
K.
, and
Hsu
,
P. F.
,
2007
, “
Modeling the Radiative Properties of Microscale Random Roughness Surfaces
,”
ASME J. Heat Transfer
,
129
(
1
), pp.
71
78
.10.1115/1.2401200
23.
Brodu
,
E.
,
Balat-Pichelin
,
M.
,
Sans
,
J. L.
, and
Kasper
,
J. C.
,
2014
, “
Influence of Roughness and Composition on the Total Emissivity of Tungsten, Rhenium and Tungsten–25% Rhenium Alloy at High Temperature
,”
J. Alloys Compd.
,
585
, pp.
510
517
.10.1016/j.jallcom.2013.09.184
24.
Yu
,
K.
,
Liu
,
Y.
,
Liu
,
D.
, and
Liu
,
Y.
,
2019
, “
Normal Spectral Emissivity Characteristics of Roughened Cobalt and Improved Emissivity Model Based on Agababov Roughness Function
,”
Appl. Therm. Eng.
,
159
, p.
113957
.10.1016/j.applthermaleng.2019.113957
25.
Fu
,
T.
,
Tan
,
P.
, and
Zhong
,
M.
,
2012
, “
Experimental Research on the Influence of Surface Conditions on the Total Hemispherical Emissivity of Iron-Based Alloys
,”
Exp. Therm. Fluid Sci.
,
40
, pp.
159
167
.10.1016/j.expthermflusci.2012.03.001
26.
Keller
,
B. P.
,
Nelson
,
S. E.
,
Walton
,
K. L.
,
Ghosh
,
T. K.
,
Tompson
,
R. V.
,
Sudarshan
,
K.
, and
Loyalka
,
S. K.
,
2015
, “
Total Hemispherical Emissivity of Inconel 718
,”
Nucl. Eng. Des.
,
287
, pp.
11
18
.10.1016/j.nucengdes.2015.02.018
27.
Jo
,
H. J.
,
King
,
J. L.
,
Blomstrand
,
K.
, and
Sridharan
,
K.
,
2017
, “
Spectral Emissivity of Oxidized and Roughened Metal Surfaces
,”
Int. J. Heat Mass Transfer
,
115
(
Part B
), pp.
1065
1071
.10.1016/j.ijheatmasstransfer.2017.08.103
28.
Misale
,
M.
,
Pisoni
,
C.
, and
Tanda
,
G.
,
1989
, “
Investigation of Total Emittance of Metals and Steels Subjected to Mechanical Surface Treatments
,”
High Temp. High Press.
21
(
3
), pp.
311
315
.
29.
Bartolini
,
R.
,
Isetti
,
C.
, and
Nannei
,
E.
,
1985
, “
On the Effect of Annealing on Total Normal Emittance of Oxidized Steel
,”
Int. J. Heat Mass Transfer
,
28
(
1
), pp.
309
311
.10.1016/0017-9310(85)90033-X
30.
Sparrow
,
E. M.
,
Heinisch
,
R. P.
, and
Tien
,
K. K.
,
1973
, “
Effect of Film Thickness on the Infrared Reflectance of Very Thin Metallic Films
,”
ASME J. Heat Transfer
,
95
(
4
), pp.
534
535
.10.1115/1.3450102
31.
Phelan
,
P. E.
,
Chen
,
G.
, and
Tien
,
C. L.
,
1992
, “
Thickness-Dependent Radiative Properties of Y-Ba-Cu-O Thin Films
,”
ASME J. Heat Transfer
,
114
(
1
), pp.
227
233
.10.1115/1.2911251
32.
Huang
,
Z.
,
Zhou
,
W.
,
Tang
,
X.
,
Zhu
,
D.
, and
Luo
,
F.
,
2011
, “
Effects of Substrate Roughness on Infrared-Emissivity Characteristics of Au Films Deposited on Ni Alloy
,”
Thin Solid Films
,
519
(
10
), pp.
3100
3106
.10.1016/j.tsf.2010.12.157
33.
Brannon
,
R. R.
, Jr.
, and
Goldstein
,
R. J.
,
1970
, “
Emittance of Oxide Layers on a Metal Substrate
,” ASME
J. Heat Transfer
,
92
(
2
), pp.
257
263
.10.1115/1.3449658
34.
Isetti
,
C.
, and
Nannei
,
E.
,
1980
, “
Total Normal Emittance of Stainless Steel at High Temperatures: Influence of Oxide Layer Growth
,”
High Temp. High Press.
12
(
3
), pp.
307
310
.
35.
Ané
,
J. M.
,
Sacadura
,
J. F.
, and
Stekelorom
,
P.
,
1982
, “In
fluence of Oxidation on the Radiative Properties of Stainless Steels as a Function of Temperature
,” Proceedings of the Seventh International Heat Transfer Conference
, Vol.
2
, Munich, Germany, Sept. 6–10, pp.
463
467
.
36.
Jones
,
P. D.
,
Teodorescu
,
G.
, and
Overfelt
,
R. A.
,
2006
, “
Spectral-Directional Emittance of CuO at High Temperatures
,”
ASME J. Heat Transfer
,
128
(
4
), pp.
382
388
.10.1115/1.2165207
37.
Shi
,
D.
,
Zou
,
F.
,
Wang
,
S.
,
Zhu
,
Z.
, and
Sun
,
J.
,
2014
, “
Effect of Surface Oxidization on the Spectral Emissivity of Steel 304 at the Elevated Temperature in Air
,”
Infrared Phys. Technol.
,
66
, pp.
6
12
.10.1016/j.infrared.2014.05.001
38.
Li
,
L.
,
Yu
,
K.
,
Zhang
,
K.
, and
Liu
,
Y.
,
2016
, “
Study of Ti–6Al–4V Alloy Spectral Emissivity Characteristics During Thermal Oxidation Process
,”
Int. J. Heat Mass Transfer
,
101
, pp.
699
706
.10.1016/j.ijheatmasstransfer.2016.05.069
39.
Zhao
,
S.
,
Li
,
X.
,
Zhou
,
X.
,
Cheng
,
K.
, and
Huai
,
X.
,
2016
, “
Investigation of the Effects of Ni-Based Alloy DZ125 on the Normal Spectral Emissivity During Oxidation
,”
Appl. Therm. Eng., Part A
,
109
, pp.
663
671
.10.1016/j.applthermaleng.2016.08.122
40.
Xing
,
W.
,
Shi
,
D.
,
Sun
,
J.
, and
Zhu
,
Z.
,
2018
, “
Emissivity Model of Steel 430 During the Growth of Oxide Layer at 800–1100 K and 1.5 μm
,”
Infrared Phys. Technol.
,
88
, pp.
23
31
.10.1016/j.infrared.2017.11.001
41.
Heavens
,
O. S.
,
1955
,
Optical Properties of Thin Solid Films
,
Butterworths
,
London
.
42.
Ruffino
,
G.
, and
Pisoni
,
C.
,
1976
, “
An Apparatus for Emissivity Measurements
,”
High Temp. High Press.
8
(
4
), pp.
419
424
.
43.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
44.
Palik
,
E. D.
,
1985
,
Handbook of Optical Constants of Solids
,
Academic Press
,
New York
.
You do not currently have access to this content.