Abstract

Pelletized magnesium manganese oxide shows promise for high temperature thermochemical energy storage. It can be thermally reduced in the temperature range between 1250 °C and 1500 °C and re-oxidized with air at typical gas-turbine inlet pressures (1–25 bar) in the temperature range between 600 °C and 1500 °C. The combined thermal and chemical volumetric energy density is approximately 2300 MJ/m3. The rate at which a thermochemical storage module can be charged is limited by heat transfer inside the solid packed bed. Hence, the effective thermal conductivity of packed beds of magnesium-manganese oxide pellets is a crucial parameter for engineering Mg-Mn-O redox storage devices. We have measured the effective thermal conductivity of a packed bed of 3.66 ± 0.516 mm sized magnesium manganese oxide (Mn to Mg molar ratio of 1:1) pellets in the temperature range of 300–1400 °C. Since the material is electrically conductive at temperatures above 600 °C, the sheathed transient hot wire method is used for measurements. Raw data is analyzed using the Blackwell solution to extract the bed thermal conductivity. The effective thermal conductivity standard deviation is less than 10% for a minimum of three repeat measurements at each temperature. Experimental results show an increase in the effective thermal conductivity with temperature from 0.50 W/m °C around 300 °C to 1.81 W/m °C close to 1400 °C. We propose a dual porosity model to express the effective thermal conductivity as a function of temperature. This model also considers the effect of radiation within the bed, as this is the dominant heat transfer mode at high temperatures. The proposed model accounts for microscale pellet porosity, macroscale bed porosity, pellet size, solid thermal conductivity (phonon transport), and radiation (photon transport). The coefficient of determination between the proposed model and the experimental results is greater than 0.90.

References

1.
Rahmatian
,
N.
,
Bo
,
A.
,
Randhir
,
K.
,
Klausner
,
J.
, and
Petrasch
,
J.
, “
Bench-Scale Demonstration of Thermochemical Energy Storage Using the Magnesium-Manganese-Oxide Redox System
,”
J. Energy Storage
, under review.
2.
Bulfin
,
B.
,
Vieten
,
J.
,
Agrafiotis
,
C.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2017
, “
Applications and Limitations of Two Step Metal Oxide Thermochemical Redox Cycles; a Review
,”
J. Mater. Chem. A
,
5
(
36
), pp.
18951
18966
.10.1039/C7TA05025A
3.
Prieto
,
C.
,
Cooper
,
P.
,
Fernández
,
A. I.
, and
Cabeza
,
L. F.
,
2016
, “
Review of Technology: Thermochemical Energy Storage for Concentrated Solar Power Plants
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
909
929
.10.1016/j.rser.2015.12.364
4.
Cot-Gores
,
J.
,
Castell
,
A.
, and
Luisa
,
F.
,
2012
, “
Thermochemical Energy Storage and Conversion: A-State-of-the-Art Review of the Experimental Research Under Practical Conditions
,”
Renewable Sustainable Energy Rev.
,
16
(
7
), pp.
5207
5224
.10.1016/j.rser.2012.04.007
5.
Sunku Prasad
,
J.
,
Muthukumar
,
P.
,
Desai
,
F.
,
Basu
,
D. N.
, and
Rahman
,
M. M.
,
2019
, “
A Critical Review of High-Temperature Reversible Thermochemical Energy Storage Systems
,”
Appl. Energy
,
254
, p.
113733
.10.1016/j.apenergy.2019.113733
6.
Funayama
,
S.
,
Takasu
,
F.
,
Kim
,
S. T.
, and
Kato
,
Y.
,
2020
, “
Thermochemical Storage Performance of a Packed Bed of Calcium Hydroxide Composite With a Silicon-Based Ceramic Honeycomb Support
,”
Energy (Oxford)
,
201
, p.
117673
.10.1016/j.energy.2020.117673
7.
Hamidi
,
M.
,
Wheeler
,
V. M.
,
Gao
,
X.
,
Pye
,
J.
,
Catchpole
,
K.
, and
Weimer
,
A. W.
,
2020
, “
Reduction of Iron–Manganese Oxide Particles in a Lab-Scale Packed-Bed Reactor for Thermochemical Energy Storage
,”
Chem. Eng. Sci.
,
221
, p.
115700
.10.1016/j.ces.2020.115700
8.
Wang
,
B.
,
Li
,
L.
,
Schäfer
,
F.
,
Pottas
,
J. J.
,
Kumar
,
A.
,
Wheeler
,
V. M.
, and
Lipiński
,
W.
,
2021
, “
Thermal Reduction of Iron–Manganese Oxide Particles in a High-Temperature Packed-Bed Solar Thermochemical Reactor
,”
Chem. Eng. J. (Lausanne, Switzerland: 1996)
,
412
, p.
128255
.10.1016/j.cej.2020.128255
9.
Randhir
,
K.
,
King
,
K.
,
Rhodes
,
N.
,
Li
,
L.
,
Hahn
,
D.
,
Mei
,
R.
,
AuYeung
,
N.
, and
Klausner
,
J.
,
2019
, “
Magnesium-Manganese Oxides for High Temperature Thermochemical Energy Storage
,”
J. Energy Storage
,
21
, pp.
599
610
.10.1016/j.est.2018.11.024
10.
Palacios
,
A.
,
Cong
,
L.
,
Navarro
,
M. E.
,
Ding
,
Y.
, and
Barreneche
,
C.
,
2019
, “
Thermal Conductivity Measurement Techniques for Characterizing Thermal Energy Storage Materials—A Review
,”
Renewable Sustainable Energy Rev.
,
108
, pp.
32
52
.10.1016/j.rser.2019.03.020
11.
Kovalev
,
O. B.
, and
Gusarov
,
A. V.
,
2017
, “
Modeling of Granular Packed Beds, Their Statistical Analyses and Evaluation of Effective Thermal Conductivity
,”
Int. J. Therm. Sci.
,
114
, pp.
327
341
.10.1016/j.ijthermalsci.2017.01.003
12.
Walayat
,
K.
,
Duesmann
,
J.
,
Derks
,
T.
,
Mahmoudi
,
A. H.
,
Cuypers
,
R.
, and
Shahi
,
M.
,
2021
, “
Experimental and Numerical Investigations for Effective Thermal Conductivity in Packed Beds of Thermochemical Energy Storage Materials
,”
Appl. Therm. Eng.
,
193
, p.
117006
.10.1016/j.applthermaleng.2021.117006
13.
Hamidi
,
M.
,
Wheeler
,
V. M.
,
Kreider
,
P.
,
Catchpole
,
K.
, and
Weimer
,
A. W.
,
2019
, “
Effective Thermal Conductivity of a Bed Packed With Granular Iron–Manganese Oxide for Thermochemical Energy Storage
,”
Chem. Eng. Sci.
,
207
, pp.
490
494
.10.1016/j.ces.2019.06.035
14.
Kumar
,
E. A.
,
Maiya
,
M. P.
, and
Murthy
,
S. S.
,
2011
, “
Measurement and Analysis of Effective Thermal Conductivity of MmNi4.5Al0.5Hydride Bed
,”
Ind. Eng. Chem. Res.
,
50
(
23
), pp.
12990
12999
.10.1021/ie200116d
15.
Kallweit
,
J.
, and
Hahne
,
E.
,
1994
, “
Effective Thermal Conductivity of Metal Hydride Powders: Measurement and Theoretical Modelling
,”
Proceedings of the International Heat Transfer Conference
,
Brighton, UK
, Aug. 14–18, pp.
373
378
.https://elib.unistuttgart.de/bitstream/11682/2393/1/kal9.pdf
16.
Van Der Held
,
E. F. M.
, and
Van Drunen
,
F. G.
,
1949
, “
A Method of Measuring the Thermal Conductivity of Liquids
,”
Physica
,
15
(
10
), pp.
865
881
.10.1016/0031-8914(49)90129-9
17.
Li
,
C. H.
,
Williams
,
W.
,
Buongiorno
,
J.
,
Hu
,
L.
, and
Peterson
,
G. P.
,
2008
, “
Transient and Steady-State Experimental Comparison Study of Effective Thermal Conductivity of Al2O3∕Water Nanofluids
,”
ASME J. Heat Transfer-Trans. ASME
,
130
(
4
), 042407. 10.1115/1.2789719
18.
Côté
,
J.
, and
Konrad
,
J.-M.
,
2009
, “
Assessment of Structure Effects on the Thermal Conductivity of Two-Phase Porous Geomaterials
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
796
804
.10.1016/j.ijheatmasstransfer.2008.07.037
19.
Cohen
,
E.
, and
Glicksman
,
L.
,
2014
, “
Analysis of the Transient Hot-Wire Method to Measure Thermal Conductivity of Silica Aerogel: Influence of Wire Length, and Radiation Properties
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
4
), 041301.10.1115/1.4025921
20.
Enoeda
,
M.
,
Furuya
,
K.
,
Takatsu
,
H.
,
Kikuchi
,
S.
, and
Hatano
,
T.
,
1998
, “
Effective Thermal Conductivity Measurements of the Binary Pebble Beds by Hot Wire Method for the Breeding Blanket
,”
Fusion Technol.
,
34
(
3P2
), pp.
877
881
.10.13182/FST98-A11963723
21.
Presley
,
M. A.
, and
Christensen
,
P. R.
,
1997
, “
Thermal Conductivity Measurements of Particulate Materials 1. A Review
,”
J. Geophys. Res.
,
102
(
E3
), pp.
6535
6549
.10.1029/96JE03302
22.
Vadasz
,
P.
,
2010
, “
Rendering the Transient Hot Wire Experimental Method for Thermal Conductivity Estimation to Two-Phase Systems—Theoretical Leading Order Results
,”
ASME J. Heat Transfer-Trans. ASME
,
132
(
8
),
081601
.10.1115/1.4001314
23.
White
,
L. R.
, and
Davis
,
H. T.
,
1967
, “
Thermal Conductivity of Molten Alkali Nitrates
,”
J. Chem. Phys.
,
47
(
12
), pp.
5433
5439
.10.1063/1.1701811
24.
Santini
,
R.
,
Tadrist
,
L.
,
Pantaloni
,
J.
, and
Cerisier
,
P.
,
1984
, “
Measurement of Thermal Conductivity of Molten Salts in the Range 100–500 °C
,”
Int. J. Heat Mass Transfer
,
27
(
4
), pp.
623
626
.10.1016/0017-9310(84)90034-6
25.
Howell
,
J. R.
,
Siegel
,
R.
, and
Mengüç
,
M. P.
,
2011
,
Thermal Radiation Heat Transfer
,
CRC Press
,
Boca Raton, FL
.
26.
Kamiuto
,
K.
,
1990
, “
Study of Scattering Regime Diagrams
,”
J. Thermophys. Heat Transfer
,
4
(
4
), pp.
432
435
.10.2514/3.205
27.
Krupiczka
,
R.
,
1967
, “
Analysis of Thermal Conductivity in Granular Materials
,”
Int. Chem. Eng.
,
7
, pp.
122
144
.
28.
Incropera
,
F. P.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
29.
Loeb
,
A. L.
,
1954
, “
Thermal Conductivity: VIII, a Theory of Thermal Conductivity of Porous Materials
,”
J. Am. Ceram. Soc.
,
37
(
2
), pp.
96
99
.10.1111/j.1551-2916.1954.tb20107.x
30.
Davis
,
R. H.
,
1986
, “
The Effective Thermal Conductivity of a Composite Material With Spherical Inclusions
,”
Int J Thermophys
,
7
(
3
), pp.
609
620
.10.1007/BF00502394
31.
Touloukian
,
Y. S.
,
1970
,
Thermal Conductivity: Nonmetallic Solids
,
Y. S.
Touloukian
, et al., ed.,
IFI/Plenum
,
New York
.
32.
Blackwell
,
J. H.
,
1954
, “
A Transient‐Flow Method for Determination of Thermal Constants of Insulating Materials in Bulk Part I—Theory
,”
J. Appl. Phys.
,
25
(
2
), pp.
137
144
.10.1063/1.1721592
33.
Nix
,
G. H.
,
Lowery
,
G. W.
,
Vachon
,
R. I.
, and
Tanger
,
G. E.
,
1967
, “
Direct Determination of Thermal Diffusivity and Conductivity With a Refined Line-Source Technique
,”
Thermophysics of Spacecraft and Planetary Bodies: Radiation Properties of Solids and the Electromagnetic Radiation Environment in Space
,
American Institute of Aeronautics and Astronautics
,
New York
, pp.
865
878
.
34.
Andersson
,
P.
, and
Bäckström
,
G.
,
1976
, “
Thermal Conductivity of Solids Under Pressure by the Transient Hot Wire Method
,”
Rev. Sci. Instrum.
,
47
(
2
), pp.
205
209
.10.1063/1.1134581
35.
Arblaster
,
J. W.
,
2015
, “
Selected Electrical Resistivity Values for the Platinum Group of Metals Part I: Palladium and Platinum
,”
Johnson Matthey Technol. Rev.
,
59
(
3
), pp.
174
181
.10.1595/205651315X688091
36.
Yagi
,
S.
, and
Kunii
,
D.
,
1957
, “
Studies on Effective Thermal Conductivities in Packed Beds
,”
AIChE J.
,
3
(
3
), pp.
373
381
.10.1002/aic.690030317
37.
Transmetra, “
Table of Emissivity of Various Surfaces
,” Transmetra, accessed Apr. 19, 2021, https://www.transmetra.ch/images/transmetra_pdf/publikationen_literatur/pyrometrie-thermografie/emissivity_table.pdf
38.
Takegoshi
,
E.
,
Hirasawa
,
Y.
,
Imura
,
S.
, and
Shimazaki
,
T.
,
1984
, “
Measurement of Thermal Properties of Iron Oxide Pellets
,”
Int. J. Thermophys.
,
5
(
2
), pp.
219
228
.10.1007/BF00505502
39.
Randhir
,
K.
,
King
,
K.
,
Petrasch
,
J.
, and
Klausner
,
J.
,
2020
, “
Oxidation Kinetics of Magnesium‐Manganese Oxides for High‐Temperature Thermochemical Energy Storage
,”
Energy Technol. (Weinheim, Germany)
,
8
(
10
), p.
2000063
.10.1002/ente.202000063
You do not currently have access to this content.