Abstract

A new design, not reported in the existing literature, combining features of ionic wind and mechanical vibration to induce appreciable airflow is developed. Its feasibility is demonstrated in a cooling system to enhance heat transfer. Ionic wind is generated using a thin, flexible plate as the emitting electrode and a heated, vertical plate as the collecting electrode. By placing a metal inductor close to the discharge electrode, an electrostatic field is formed. The electrode is attracted and thus moves toward the inductor owing to the electrostatic force created. To sustain periodic oscillation and produce large vibrational amplitudes, the inductor is grounded using current-limiting resistors. Vibrational characteristics are highly dependent on the corona voltage, resistance of the resistor, and position of the induction plate, which are examined in the experiments. It was found that the heat transfer enhancement is not improved at high corona voltages because the ionic wind overwhelms the mechanical effect of vibration. The vibrational effect becomes more prominent at low corona voltages with which the electrical field created by the corona discharge is not so intense. The maximum increase of heat transfer coefficient over that without vibration can be as large as 13.4% at the lowest corona voltage considered in the tests.

References

1.
Robinson
,
M.
,
1962
, “
A History of the Ionic Wind
,”
Am. J. Phys.
,
30
(
5
), pp.
366
372
.10.1119/1.1942021
2.
Parker
,
K. R.
,
1997
,
Applied Electrostatic Precipitation
,
Blackie Academic & Professional
,
London
.
3.
Mizuno
,
A.
,
2000
, “
Electrostatic Precipitation
,”
IEEE Trans. Dielectr. Electr. Insul.
7
(
5
), pp.
615
624
.10.1109/94.879357
4.
Schein
,
L. B.
,
1992
,
Electrophotography and Development Physics
,
Springer-Verlag
,
Berlin
.
5.
Wang
,
J.-C.
,
Zhang
,
D.
,
Leoni
,
N.
,
Birecki
,
H.
,
Gila
,
O.
, and
Kushner
,
M. J.
,
2014
, “
Charging of Moving Surfaces by Corona Discharges Sustained in Air
,”
J. Appl. Phys.
,
116
(
4
), p.
043301
.10.1063/1.4890520
6.
Léger
,
L.
,
Moreau
,
E.
, and
Touchard
,
G.
,
2002
, “
Effect of a DC Corona Electrical Discharge on the Airflow Along a Flat Plate
,”
IEEE Trans. Ind. Appl.
,
38
(
6
), pp.
1478
1485
.10.1109/TIA.2002.804769
7.
Magnier
,
P.
,
Hong
,
D.
,
Leroy-Chesneau
,
A.
,
Bauchire
,
J. M.
, and
Hureau
,
J.
,
2007
, “
Control of Separated Flows With the Ionic Wind Generated by a DC Corona Discharge
,”
Exp. Fluids
,
42
(
5
), pp.
815
825
.10.1007/s00348-007-0297-z
8.
El-Khabiry
,
S.
, and
Colver
,
G. M.
,
1997
, “
Drag Reduction by a DC Corona Discharge Along an Electrically Conductive Flat Plate for Small Reynolds Number Flow
,”
Phys. Fluids
,
9
(
3
), pp.
587
599
.10.1063/1.869219
9.
Darabi
,
J.
,
Rada
,
M.
,
Ohadi
,
M.
, and
Lawler
,
J.
,
2002
, “
Design, Fabrication, and Testing of an Electrohydrodynamic Ion-Drag Micropump
,”
J. Microelectromech. Syst.
,
11
(
6
), pp.
684
690
.10.1109/JMEMS.2002.805046
10.
Qiu
,
W.
,
Xia
,
L.
,
Tan
,
X.
, and
Yang
,
L.
,
2010
, “
The Velocity Characteristics of a Serial-Staged EHD Gas Pump in Air
,”
IEEE Trans. Plasma Sci.
,
38
(
10
), pp.
2848
2853
.10.1109/TPS.2010.2060500
11.
Moreau
,
E.
, and
Touchard
,
G.
,
2008
, “
Enhancing the Mechanical Efficiency of Electric Wind in Corona Discharges
,”
J. Electrostat.
,
66
(
1–2
), pp.
39
44
.10.1016/j.elstat.2007.08.006
12.
Jewell-Larsen
,
N. E.
,
Ran
,
H.
,
Zhang
,
Y.
,
Schwiebert
,
M. K.
, and
Honer Tessera
,
K. A.
,
2009
, “
Electrohydrodynamic (EHD) Cooled Laptop
,”
Proceedings of the 25th IEEE Semi-Therm Symposium
, San Jose, CA, Mar. 15–19, pp.
261
266
.10.1109/STHERM.2009.4810773
13.
Chen
,
I. Y.
,
Chen
,
C.-J.
, and
Wang
,
C.-C.
,
2014
, “
Influence of Electrode Configuration on the Heat Transfer Performance of a LED Heat Source
,”
Int. J. Heat Mass Transfer
,
77
, pp.
795
801
.10.1016/j.ijheatmasstransfer.2014.06.023
14.
Fylladitakis
,
E. D.
,
Theodoridis
,
M. P.
, and
Moronis
,
A. X.
,
2014
, “
Review on the History, Research, and Applications of Electrohydrodynamics
,”
IEEE Trans. Plasma Sci.
,
42
(
2
), pp.
358
375
.10.1109/TPS.2013.2297173
15.
Johnson
,
M. J.
, and
Go
,
D. B.
,
2017
, “
Recent Advances in Electrohydrodynamic Pumps Operated by Ionic Winds: A Review
,”
Plasma Sources Sci. Technol.
,
26
(
10
), p.
103002
.10.1088/1361-6595/aa88e7
16.
Owsenek
,
B. L.
,
Seyed-Yagoobi
,
J.
, and
Page
,
R. H.
,
1995
, “
Experimental Investigation of Corona Wind Heat Transfer Enhancement With a Heated Horizontal Flat Plate
,”
ASME J. Heat Transfer
,
117
(
2
), pp.
309
315
.10.1115/1.2822522
17.
Owsenek
,
B. L.
, and
Seyed-Yagoobi
,
J.
,
1997
, “
Theoretical and Experimental Study of Electrohydrodynamic Heat Transfer Enhancement Through Wire-Plate Corona Discharge
,”
ASME J. Heat Transfer
,
119
(
3
), pp.
604
610
.10.1115/1.2824148
18.
Go
,
D. B.
,
Garimella
,
S. V.
,
Fisher
,
T. S.
, and
Mongia
,
R. K.
,
2007
, “
Ionic Winds for Locally Enhanced Cooling
,”
J. Appl. Phys.
,
102
(
5
), p.
053302
.10.1063/1.2776164
19.
Go
,
D. B.
,
Maturana
,
R. A.
,
Fisher
,
T. S.
, and
Garimella
,
S. V.
,
2008
, “
Enhancement of External Forced Convection by Ionic Wind
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6047
6053
.10.1016/j.ijheatmasstransfer.2008.05.012
20.
Kalman
,
H.
, and
Sher
,
E.
,
2001
, “
Enhancement of Heat Transfer by Means of a Corona Wind Created by a Wire Electrode and Confined Wings Assembly
,”
Appl. Therm. Eng.
,
21
(
3
), pp.
265
282
.10.1016/S1359-4311(00)00038-7
21.
Molki
,
M.
, and
Bhamidipati
,
K. L.
,
2004
, “
Enhancement of Convective Heat Transfer in the Developing Region of Circular Tubes Using Corona Wind
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
), pp.
4301
4314
.10.1016/j.ijheatmasstransfer.2004.04.014
22.
Lakeh
,
R. B.
, and
Molki
,
M.
,
2012
, “
Targeted Heat Transfer Augmentation in Circular Tubes Using a Corona Jet
,”
J. Electrostat.
,
70
(
1
), pp.
31
42
.10.1016/j.elstat.2011.09.003
23.
Shin
,
D. H.
,
Yoon
,
J. S.
, and
Ko
,
H. S.
,
2015
, “
Experimental Optimization of Ion Wind Generator With Needle to Parallel Plates for Cooling Device
,”
Int. J. Heat Mass Transfer
,
84
, pp.
35
45
.10.1016/j.ijheatmasstransfer.2015.01.018
24.
Gallandat
,
N.
,
Bonetto
,
F.
, and
Mayor
,
J. R.
,
2017
, “
Ionic Wind Heat Transfer Enhancement in Vertical Rectangular Channels: Experimental Study and Model Validation
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
2
), p.
021005
.10.1115/1.4035291
25.
Laohalertdecha
,
S.
,
Naphon
,
P.
, and
Wongwises
,
S.
,
2007
, “
A Review of Electrohydrodynamic Enhancement of Heat Transfer
,”
Renew. Sust. Energy Rev.
,
11
(
5
), pp.
858
876
.10.1016/j.rser.2005.07.002
26.
Liu
,
S.-F.
,
Huang
,
R.-T.
,
Sheu
,
W.-J.
, and
Wang
,
C.-C.
,
2009
, “
Heat Transfer by a Piezoelectric Fan on a Flat Surface Subject to the Influence of Horizontal/Vertical Arrangement
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2565
2570
.10.1016/j.ijheatmasstransfer.2009.01.013
27.
Kimber
,
M.
, and
Garimella
,
S. V.
,
2009
, “
Cooling Performance of Arrays of Vibrating Cantilevers
,”
ASME J. Heat Transfer
,
131
(
11
), p.
111401
.10.1115/1.3153579
28.
Li
,
H.-Y.
,
Chao
,
S.-M.
,
Chen
,
J.-W.
, and
Yang
,
J.-T.
,
2013
, “
Thermal Performance of Plate-Fin Heat Sinks With Piezoelectric Cooling Fan
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
722
732
.10.1016/j.ijheatmasstransfer.2012.11.005
29.
Tsui
,
Y.-Y.
,
Huang
,
Y.-X.
,
Lan
,
C.-C.
, and
Wang
,
C.-C.
,
2017
, “
A Study of Heat Transfer Enhancement Via Corona Discharge by Using a Plate Corona Electrode
,”
J. Electrostat.
,
87
, pp.
1
10
.10.1016/j.elstat.2017.02.003
30.
Batra
,
R. C.
,
Porfiri
,
M.
, and
Spinello
,
D.
,
2007
, “
Review of Modeling Electrostatically Actuated Microelectromechanical Systems
,”
Smart Mater. Struct.
,
16
(
6
), pp.
R23
R31
.10.1088/0964-1726/16/6/R01
31.
Zhang
,
W.-M.
,
Yan
,
H.
,
Peng
,
Z.-K.
, and
Meng
,
G.
,
2014
, “
Electrostatic Pull-in Instability in MEMS/NEMS: A Review
,”
Sens. Actuators A Phys.
,
214
, pp.
187
218
.10.1016/j.sna.2014.04.025
32.
Chuang
,
W.-C.
,
Lee
,
H.-L.
,
Chang
,
P.-Z.
, and
Hu
,
Y.-C.
,
2010
, “
Review on the Modeling of Electrostatic MEMS
,”
Sensors
,
10
(
6
), pp.
6149
6171
.10.3390/s100606149
33.
Abdel-Rahman
,
E. M.
,
Younis
,
M. I.
, and
Nayfeh
,
A. H.
,
2002
, “
Characterization of the Mechanical Behavior of an Electrically Actuated Microbeam
,”
J. Micromech. Microeng.
,
12
(
6
), pp.
759
766
.10.1088/0960-1317/12/6/306
34.
Batra
,
R. C.
,
Porfiri
,
M.
, and
Spinello
,
D.
,
2008
, “
Vibrations of Narrow Microbeams Predeformed by an Electric Field
,”
J. Sound Vib.
,
309
(
3–5
), pp.
600
612
.10.1016/j.jsv.2007.07.030
35.
Caruntu
,
D. I.
, and
Knecht
,
M. W.
,
2015
, “
Microelectromechanical Systems Cantilever Resonators Under Soft Alternating Current Voltage of Frequency Near Natural Frequency
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
4
), p.
041016
.10.1115/1.4028887
36.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate
,”
Int. J. Heat Mass Transfer
,
18
(
11
), pp.
1323
1329
.10.1016/0017-9310(75)90243-4
37.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
38.
Johnson
,
M. J.
, and
Go
,
D. B.
,
2016
, “
Impingement Cooling Using the Ionic Wind Generated by a Low-Voltage Piezoelectric Transformer
,”
Front. Mech. Eng.
,
7
, pp.
1
11
.10.3389/fmech.2016.00007
You do not currently have access to this content.