Abstract

We present an electromechanical model for the analysis of electrowetting by considering the balance between an electric force and a surface tension force acting on the contact line of three phases, namely the droplet (D) phase, the substrate (S) phase, and the ambiance (A) phase. We show that the Maxwell stresses at the ambiance–substrate (A–S) interface, the droplet–substrate (D–S) interface, and the droplet–ambiance (D–A) interface induce an electric force on the three-phase contact line which is responsible for the modification of the apparent contact angle in electrowetting. For a classical electrowetting configuration with a flat substrate, we show that the electric force on the contact line (or the electrowetting number) is mainly due to the Maxwell stresses at the D–A interface. The model is validated by its excellent agreement with the classical Young-Lippmann (Y-L) model for sufficiently large droplets and comparable electric permittivities between A and S phases. Interestingly, our new model reveals that the finite size of droplet produces profound effects on the electrowetting that the electrowetting number becomes dependent on the permittivity of A phase and the equilibrium contact angle, which is in stark contrast to the Y-L model. The reasons for these remarkable effects are elaborated and clarified. The findings in the current study are complementary to the classical Y-L model and provide new insights into the electrowetting phenomenon.

References

1.
Zhao
,
Y.-P.
, and
Wang
,
Y.
,
2013
, “
Fundamentals and Applications of Electrowetting: A Critical Review
,”
Rev. Adhes. Adhes.
,
1
(
1
), pp.
114
174
.10.7569/RAA.2013.097304
2.
Pollack
,
M. G.
,
Shenderov
,
A. D.
, and
Fair
,
R. B.
,
2002
, “
Electrowetting-Based Actuation of Droplets for Integrated Microfluidics
,”
Lab Chip
,
2
(
2
), pp.
96
101
.10.1039/b110474h
3.
Pollack
,
M. G.
,
Fair
,
R. B.
, and
Shenderov
,
A. D.
,
2000
, “
Electrowetting-Based Actuation of Liquid Droplets for Microfluidic Applications
,”
Appl. Phys. Lett.
,
77
(
11
), pp.
1725
1726
.10.1063/1.1308534
4.
Srinivasan
,
V.
,
Pamula
,
V. K.
, and
Fair
,
R. B.
,
2004
, “
An Integrated Digital Microfluidic Lab-on-a-Chip for Clinical Diagnostics on Human Physiological Fluids
,”
Lab Chip
,
4
(
4
), pp.
310
315
.10.1039/b403341h
5.
Guan
,
Y.
, and
Tong
,
A. Y.
,
2015
, “
A Numerical Study of Droplet Splitting and Merging in a Parallel-Plate Electrowetting-on-Dielectric Device
,”
ASME J. Heat Transfer
,
137
(
9
), p.
091016
.10.1115/1.4030229
6.
Berge
,
B.
, and
Peseux
,
J.
,
2000
, “
Variable Focal Lens Controlled by an External Voltage: An Application of Electrowetting
,”
Eur. Phys. J. E
,
3
(
2
), pp.
159
163
.10.1007/s101890070029
7.
Kuiper
,
S.
, and
Hendriks
,
B. H. W.
,
2004
, “
Variable-Focus Liquid Lens for Miniature Cameras
,”
Appl. Phys. Lett.
,
85
(
7
), pp.
1128
1130
.10.1063/1.1779954
8.
Riahi
,
M.
,
Brakke
,
K. A.
,
Alizadeh
,
E.
, and
Shahroosvand
,
H.
,
2016
, “
Fabrication and Characterization of an Electrowetting Display Based on the Wetting–Dewetting in a Cubic Structure
,”
Optik
,
127
(
5
), pp.
2703
2707
.10.1016/j.ijleo.2015.11.205
9.
Zhou
,
K.
,
Heikenfeld
,
J.
,
Dean
,
K. A.
,
Howard
,
E. M.
, and
Johnson
,
M. R.
,
2009
, “
A Full Description of a Simple and Scalable Fabrication Process for Electrowetting Displays
,”
J. Micromech. Microeng.
,
19
(
6
), p.
065029
.10.1088/0960-1317/19/6/065029
10.
Feenstra
,
J.
,
2016
, “
Video-Speed Electrowetting Display Technology
,”
Handbook of Visual Display Technology
,
J.
Chen
,
W.
Cranton
, and
M.
Fihn
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
2443
2458
.
11.
Mohseni
,
K.
, and
Baird
,
E. S.
,
2007
, “
Digitized Heat Transfer Using Electrowetting on Dielectric
,”
Nanoscale Microscale Thermophys. Eng.
,
11
(
1–2
), pp.
99
108
.10.1080/15567260701337555
12.
Yan
,
R.
, and
Chen
,
C.-L.
,
2019
, “
Condensation Droplet Distribution Regulated by Electrowetting
,”
ASME J. Heat Transfer
,
141
(
11
), p.
111501
.10.1115/1.4044508
13.
Islam
,
M. A.
, and
Tong
,
A. Y.
,
2018
, “
A Numerical Study on Electrowetting-Induced Droplet Detachment From Hydrophobic Surface
,”
ASME J. Heat Transfer
,
140
(
5
), p.
052003
.10.1115/1.4038540
14.
Zhang
,
K.
,
Li
,
Z.
, and
Chen
,
S.
,
2019
, “
Analytical Prediction of Electrowetting-Induced Jumping Motion for Droplets on Hydrophobic Substrates
,”
Phys. Fluids
,
31
(
8
), p.
081703
.10.1063/1.5109164
15.
Scheid
,
C.
, and
Witomski
,
P.
,
2009
, “
A Proof of the Invariance of the Contact Angle in Electrowetting
,”
Math. Comput. Model.
,
49
(
3–4
), pp.
647
665
.10.1016/j.mcm.2008.01.009
16.
Mugele
,
F.
, and
Buehrle
,
J.
,
2007
, “
Equilibrium Drop Surface Profiles in Electric Fields
,”
J. Phys. Condens. Matter
,
19
(
37
), p.
375112
.10.1088/0953-8984/19/37/375112
17.
Drygiannakis
,
A. I.
,
Papathanasiou
,
A. G.
, and
Boudouvis
,
A. G.
,
2009
, “
On the Connection Between Dielectric Breakdown Strength, Trapping of Charge, and Contact Angle Saturation in Electrowetting
,”
Langmuir
,
25
(
1
), pp.
147
152
.10.1021/la802551j
18.
Moon
,
H.
,
Cho
,
S. K.
,
Garrell
,
R. L.
, and
Kim
,
C.-J. C.
,
2002
, “
Low Voltage Electrowetting-on-Dielectric
,”
J. Appl. Phys.
,
92
(
7
), pp.
4080
4087
.10.1063/1.1504171
19.
Verheijen
,
H. J. J.
, and
Prins
,
M. W. J.
,
1999
, “
Reversible Electrowetting and Trapping of Charge:  Model and Experiments
,”
Langmuir
,
15
(
20
), pp.
6616
6620
.10.1021/la990548n
20.
Welters
,
W. J. J.
, and
Fokkink
,
L. G. J.
,
1998
, “
Fast Electrically Switchable Capillary Effects
,”
Langmuir
,
14
(
7
), pp.
1535
1538
.10.1021/la971153b
21.
Mugele
,
F.
, and
Baret
,
J.-C.
,
2005
, “
Electrowetting: From Basics to Applications
,”
J. Phys. Condens. Matter
,
17
(
28
), pp.
R705
R774
.10.1088/0953-8984/17/28/R01
22.
Berge
,
B.
,
1993
, “
Electrocapillarité Et Mouillage De Films Isolants Par L'eau
,”
C. R. Acad. Sci.
,
317
, pp.
157
163
.https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4852546
23.
Wang
,
Y.
, and
Zhao
,
Y.-P.
,
2012
, “
Electrowetting on Curved Surfaces
,”
Soft Matter
,
8
(
9
), pp.
2599
2606
.10.1039/c2sm06878h
24.
Wang
,
Z.
, and
Zhao
,
Y.-P.
,
2017
, “
Wetting and Electrowetting on Corrugated Substrates
,”
Phys. Fluids
,
29
(
6
), p.
067101
.10.1063/1.4984244
25.
Dai
,
W.
, and
Zhao
,
Y. P.
,
2008
, “
An Electrowetting Model for Rough Surfaces Under Low Voltage
,”
J. Adhes. Sci. Technol.
,
22
(
2
), pp.
217
229
.10.1163/156856108X306966
26.
Hadidimasouleh
,
R.
,
Yaghmaee
,
M. S.
,
Raissi
,
B.
, and
Riahifar
,
R.
,
2016
, “
Prediction of the Contact Angle of Colloids and Microfluids During Electrowetting
,”
Micro Nano Lett.
,
11
(
11
), pp.
783
788
.10.1049/mnl.2016.0327
27.
Sondag-Huethorst
,
J. A. M.
, and
Fokkink
,
L. G. J.
,
1994
, “
Potential-Dependent Wetting of Electroactive Ferrocene-Terminated Alkanethiolate Monolayers on Gold
,”
Langmuir
,
10
(
11
), pp.
4380
4387
.10.1021/la00023a074
28.
Digilov
,
R.
,
2000
, “
Charge-Induced Modification of Contact Angle:  The Secondary Electrocapillary Effect
,”
Langmuir
,
16
(
16
), pp.
6719
6723
.10.1021/la991308a
29.
Bormashenko
,
E.
, and
Gendelman
,
O.
,
2014
, “
A Generalized Electrowetting Equation: Its Derivation and Consequences
,”
Chem. Phys. Lett.
,
599
, pp.
139
141
.10.1016/j.cplett.2014.03.032
30.
Kumar
,
S.
,
Kumar
,
P.
,
DasGupta
,
S.
, and
Chakraborty
,
S.
,
2019
, “
Electrowetting of a Nano-Suspension on a Soft Solid
,”
Appl. Phys. Lett.
,
114
(
7
), p.
073702
.10.1063/1.5083143
31.
Vallet
,
M.
,
Vallade
,
M.
, and
Berge
,
B.
,
1999
, “
Limiting Phenomena for the Spreading of Water on Polymer Films by Electrowetting
,”
Eur. Phys. J. B
,
11
(
4
), pp.
583
591
.10.1007/s100510051186
32.
Kang
,
K. H.
,
2002
, “
How Electrostatic Fields Change Contact Angle in Electrowetting
,”
Langmuir
,
18
(
26
), pp.
10318
10322
.10.1021/la0263615
33.
Kang
,
K. H.
,
Kang
,
I. S.
, and
Lee
,
C. M.
,
2003
, “
Wetting Tension Due to Coulombic Interaction in Charge-Related Wetting Phenomena
,”
Langmuir
,
19
(
13
), pp.
5407
5412
.10.1021/la034163n
34.
Hong
,
J. S.
,
Ko
,
S. H.
,
Kang
,
K. H.
, and
Kang
,
I. S.
,
2008
, “
A Numerical Investigation on Ac Electrowetting of a Droplet
,”
Microfluid. Nanofluid.
,
5
(
2
), pp.
263
271
.10.1007/s10404-007-0246-4
35.
Xu
,
X.
,
Zhang
,
Y.
, and
Sun
,
L.
,
2019
, “
Mechanism of Droplets on Electrowetting-on-Dielectric Chips Transition From Stillness to Motion
,”
Indian J. Phys.
,
93
(
4
), pp.
427
438
.10.1007/s12648-018-1321-2
36.
Peykov
,
V.
,
Quinn
,
A.
, and
Ralston
,
J.
,
2000
, “
Electrowetting: A Model for Contact-Angle Saturation
,”
Colloid Polym. Sci.
,
278
(
8
), pp.
789
793
.10.1007/s003960000333
37.
Zhao
,
R.
, and
Liang
,
Z.-C.
,
2016
, “
Mechanism of Contact Angle Saturation and an Energy-Based Model for Electrowetting
,”
Chin. Phys. B
,
25
(
6
), p.
066801
.10.1088/1674-1056/25/6/066801
38.
Papathanasiou
,
A. G.
, and
Boudouvis
,
A. G.
,
2005
, “
Manifestation of the Connection Between Dielectric Breakdown Strength and Contact Angle Saturation in Electrowetting
,”
Appl. Phys. Lett.
,
86
(
16
), p.
164102
.10.1063/1.1905809
39.
Bienia
,
M.
,
Vallade
,
M.
,
Quilliet
,
C.
, and
Mugele
,
F.
,
2006
, “
Electrical-Field–Induced Curvature Increase on a Drop of Conducting Liquid
,”
Europhys. Lett.
,
74
(
1
), pp.
103
109
.10.1209/epl/i2006-10003-3
40.
Zhao
,
Y. P.
,
2019
, “
Some New Mesoscopic Crossover Length Scales Concerning the Hamaker Constant
,”
Sci. China Technol. Sci.
,
62
(
12
), pp.
2310
2312
.10.1007/s11431-019-1487-5
41.
McHale
,
G.
,
2007
, “
Cassie and Wenzel: Were They Really So Wrong?
,”
Langmuir
,
23
(
15
), pp.
8200
8205
.10.1021/la7011167
42.
Zhang
,
K.
,
Chen
,
S.
, and
Wang
,
Y.
,
2018
, “
Ratio Dependence of Contact Angle for Droplet Wetting on Chemically Heterogeneous Substrates
,”
Colloids Surf. A
,
539
, pp.
237
242
.10.1016/j.colsurfa.2017.12.026
You do not currently have access to this content.