Abstract

In the last decade, researchers working on direct contact condensation (DCC) have focused their attention on studying the effect of liquid cross-flow, in contrast to the conventional stagnant liquid pool condensers. Currently, the major applications of DCC in liquid cross-flow include the sterilization process of milk and the mixing of oxygen-rich turbine drive gas with liquid oxygen (LOX) at the booster turbopump exit of a typical staged combustion cycle-based rocket engine. In this work, attempt has been made to develop and validate a two-fluid two-phase model for predicting the complex phenomena of steam injection into a cross-flow of subcooled water. A correlation for interaction length scale has been developed for DCC cases. The correlation includes the effect of all the critical operating parameters such as liquid subcooling, steam mass flux, and liquid velocity, which hitherto has not been available in the literature. The unstable nature of steam plumes has been investigated, and critical Weber numbers for predicting stable to unstable transition in a DCC cycle have been computed. The associated pressure and temperature oscillations due to unstable nature of plume have been studied. The critical design parameters for direct contact condenser such as the heat transfer coefficients and dimensionless vapor penetration lengths have been quantified and analyzed.

References

1.
Kreith
,
F.
, and
Boehm
,
R. F.
,
1988
,
Direct-Contact Heat Transfer
,
Springer-Verlag
,
Berlin
.
2.
Liang
,
K.-S.
,
1991
, “
Experimental and Analytical Study of Direct Contact Condensation of Steam in Water
,” Ph. D. dissertation, Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, MA.
3.
Clerx
,
N.
, and
Van der Geld
,
C. W. M.
,
2009
, “
Experimental and Analytical Study of Intermittency in Direct Contact Condensation of Steam in a Cross-Flow of Water
,”
Proceedings of the ECI International Conference on Boiling Heat Transfer
, Florianopolis, Brazil, May 3–7, pp.
1
11
.http://mate.tue.nl/mate/pdfs/12803.pdf
4.
Xu
,
Q.
,
Guo
,
L.
,
Zou
,
S.
,
Chen
,
J.
, and
Zhang
,
X.
,
2013
, “
Experimental Study on Direct Contact Condensation of Stable Steam Jet in Water Flow in a Vertical Pipe
,”
Int. J. Heat Mass Transfer
,
66
, pp.
808
817
.10.1016/j.ijheatmasstransfer.2013.07.083
5.
Clark
,
J. A.
, and
Brandt
,
R. W.
,
2005
, “
Direct, Continuous Condensation of Steam in Flowing Water
,”
J. Thermophys. Heat Transfer
,
19
(
4
), pp.
455
459
.10.2514/1.14033
6.
Clark
,
J. A.
, and
Brandt
,
R. W.
,
2004
, “
Experimental Simulation of Turbine-Exhaust Oxygen Recovery
,”
AIAA
Paper No. 2004-4003. 10.2514/6.2004-4003
7.
Clerx
,
N.
,
2010
, “
Experimental Study of Direct Contact Condensation of Steam in Turbulent Duct Flow
,”
Ph.D. dissertation
, Eindhoven University of Technology, Eindhoven, The Netherlands.https://pure.tue.nl/ws/files/3318738/691389.pdf
8.
Clerx
,
N.
,
van Deurzen
,
L. G. M.
,
Pecenko
,
A.
,
Liew
,
R.
,
van der Geld
,
C. W. M.
, and
Kuerten
,
J. G. M.
,
2011
, “
Temperature Fields Induced by Direct Contact Condensation of Steam in a Cross-Flow in a Channel
,”
Heat Mass Transfer
,
47
(
8
), pp.
981
990
.10.1007/s00231-011-0868-7
9.
Li
,
Y.
,
Li
,
C.
,
Chen
,
E.
, and
Ying
,
Y.
,
2011
, “
Pressure Wave Propagation Characteristics in a Two-Phase Flow Pipeline for Liquid-Propellant Rocket
,”
Aerosp. Sci. Technol.
,
15
(
6
), pp.
453
464
.10.1016/j.ast.2010.09.011
10.
Jayachandran
,
K. N.
,
Roy
,
A.
, and
Ghosh
,
P.
,
2017
, “
Numerical Investigations on Unstable Direct Contact Condensation of Cryogenic Fluids
,”
IOP Conf. Ser.: Mater. Sci. Eng.
171, p.
12052
.10.1088/1757-899X/171/1/012052
11.
Jayachandran
,
K. N.
,
Roy
,
A.
, and
Ghosh
,
P.
,
2017
, “
Numerical Studies on Direct Contact Condensation (DCC) of Subsonic Vapor/Gas Jets in Subcooled Flowing Liquid
,”
AIAA
Paper No. 2017-0220. 10.2514/6.2017-0220
12.
Jayachandran
,
K. N.
,
Roy
,
A.
, and
Ghosh
,
P.
,
2018
, “
Numerical Investigations on Direct Contact Condensation (DCC) of Oxygen Vapour in a Staged Combustion Cycle Based Rocket Engine
,”
Indian J. Cryog.
,
43
(
1
), pp.
124
130
.10.5958/2349-2120.2018.00021.3
13.
Narayanan
,
J. K.
,
Roy
,
A.
, and
Ghosh
,
P.
,
2018
, “
CFD Analysis of Direct Contact Condensation (DCC) of Subsonic Steam Jets in a Cross-Flow of Water Using a Two-Fluid Model
,”
ASME
Paper No. IMECE2018-87382. 10.1115/IMECE2018-87382
14.
Zhu
,
K.
,
Li
,
Y.
,
Ma
,
Y.
,
Wang
,
J.
,
Wang
,
L.
, and
Li
,
C.
,
2018
, “
Investigation on Interphase Mixing and Flow Condensation Process in a Vertical Channel
,”
Exp. Therm. Fluid Sci.
,
98
, pp.
1
11
.10.1016/j.expthermflusci.2018.05.012
15.
Kang
,
Z.
,
Yanzhong
,
L.
,
Gang
,
L.
,
Jiaojiao
,
W.
,
Fushou
,
X.
, and
Yuan
,
M.
,
2018
, “
Numerical Investigation on Flow Condensation Process During Interphase Mixing in Oxygen Pipeline of Liquid Rocket
,”
Asia‐Pac. J. Chem. Eng.
,
13
(
5
), p.
e2235
.10.1002/apj.2235
16.
Zong
,
X.
,
Liu
,
J.
,
Yang
,
X.
,
Chen
,
Y.
, and
Yan
,
J.
,
2016
, “
Experimental Study on the Stable Steam Jet in Subcooled Water Flow in a Rectangular Mix Chamber
,”
Exp. Therm. Fluid Sci.
,
75
, pp.
249
257
.10.1016/j.expthermflusci.2015.10.021
17.
Chan
,
C. K.
, and
Lee
,
C. K. B.
,
1982
, “
A Regime Map for Direct Contact Condensation
,”
Int. J. Multiphase Flow
,
8
(
1
), pp.
11
20
.10.1016/0301-9322(82)90003-9
18.
Aya
,
I.
, and
Nariai
,
H.
,
1987
, “
Boundaries Between Regimes of Pressure Oscillation Induced by Steam Condensation in Pressure Suppression Containment
,”
Nucl. Eng. Des.
,
99
, pp.
31
40
.10.1016/0029-5493(87)90105-1
19.
Simpson
,
M. E.
, and
Chan
,
C. K.
,
1982
, “
Hydrodynamics of a Subsonic Vapor Jet in Subcooled Liquid
,”
ASME J. Heat Transfer
,
104
(
2
), pp.
271
278
.10.1115/1.3245083
20.
Song
,
C.-H.
, and
Kim
,
Y.-S.
,
2011
, “
Direct Contact Condensation of Steam Jet in a Pool
,”
Advances in Heat Transfer
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
227
288
.10.1016/B978-0-12-381529-3.00003-7
21.
Clerx
,
N.
,
van der Geld
,
C. W. M.
, and
Kuerten
,
J. G. M.
,
2013
, “
Turbulent Stresses in a Direct Contact Condensation Jet in Cross-Flow in a Duct With Implications for Particle Break-Up
,”
Int. J. Heat Mass Transfer
,
66
, pp.
684
694
.10.1016/j.ijheatmasstransfer.2013.07.062
22.
Xu
,
Q.
,
Guo
,
L.
,
Chang
,
L.
, and
Wang
,
Y.
,
2016
, “
Velocity Field Characteristics of the Turbulent Jet Induced by Direct Contact Condensation of Steam Jet in Crossflow of Water in a Vertical Pipe
,”
Int. J. Heat Mass Transfer
,
103
, pp.
305
318
.10.1016/j.ijheatmasstransfer.2016.07.047
23.
Xu
,
Q.
, and
Guo
,
L.
,
2016
, “
Direct Contact Condensation of Steam Jet in Crossflow of Water in a Vertical Pipe. Experimental Investigation on Condensation Regime Diagram and Jet Penetration Length
,”
Int. J. Heat Mass Transfer
,
94
, pp.
528
538
.10.1016/j.ijheatmasstransfer.2015.02.036
24.
Li
,
S. Q.
,
Lu
,
T.
,
Wang
,
L.
, and
Chen
,
H. S.
,
2017
, “
Experiment Study on Steam-Water Direct Contact Condensation in Water Flow in a Tee Junction
,”
Appl. Therm. Eng.
,
120
, pp.
99
106
.10.1016/j.applthermaleng.2017.03.127
25.
Xu
,
Q.
,
Ye
,
S.
,
Liu
,
W.
,
Chen
,
Y.
,
Chen
,
Q.
, and
Guo
,
L.
,
2019
, “
Intelligent Identification of Steam Jet Condensation Regime in Water Pipe Flow System by Wavelet Multiresolution Analysis of Pressure Oscillation and Artificial Neural Network
,”
Appl. Therm. Eng.
,
147
, pp.
1047
1058
.10.1016/j.applthermaleng.2018.11.005
26.
Xu
,
Q.
, and
Guo
,
L.
,
2017
, “
Recognition of Steam Jet Condensation Regime in Water Pipe Flow System by Statistical Features of Pressure Oscillation
,”
Appl. Therm. Eng.
,
117
, pp.
213
224
.10.1016/j.applthermaleng.2017.02.024
27.
Xu
,
Q.
,
Guo
,
L.
, and
Chang
,
L.
,
2017
, “
Mechanisms of Pressure Oscillation in Steam Jet Condensation in Water Flow in a Vertical Pipe
,”
Int. J. Heat Mass Transfer
,
110
, pp.
643
656
.10.1016/j.ijheatmasstransfer.2017.03.017
28.
Xu
,
Q.
,
Chu
,
X.
,
Yu
,
H.
,
Liu
,
W.
,
Yao
,
T.
, and
Guo
,
L.
,
2019
, “
Experimental Investigation on Interfacial Oscillation of Direct Contact Condensation of Steam Jet in Water Pipe Flow
,”
Int. J. Heat Mass Transfer
,
136
, pp.
877
887
.10.1016/j.ijheatmasstransfer.2019.03.011
29.
Xu
,
Q.
,
Guo
,
L.
, and
Chang
,
L.
,
2017
, “
Interfacial Characteristics of Steam Jet Condensation in Crossflow of Water in a Vertical Pipe
,”
Appl. Therm. Eng.
,
113
, pp.
1266
1276
.10.1016/j.applthermaleng.2016.11.094
30.
Park
,
H.-S.
,
Choi
,
S.-W.
, and
No
,
H. C.
,
2009
, “
Direct-Contact Condensation of Pure Steam on Co-Current and Counter-Current Stratified Liquid Flow in a Circular Pipe
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1112
1122
.10.1016/j.ijheatmasstransfer.2008.08.033
31.
Yang
,
X.
,
Chong
,
D.
,
Liu
,
J.
,
Zong
,
X.
, and
Yan
,
J.
,
2015
, “
Experimental Study on the Direct Contact Condensation of the Steam–Air Mixture in Subcooled Water Flow in a Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
88
, pp.
424
432
.10.1016/j.ijheatmasstransfer.2015.04.104
32.
Yang
,
X.
,
Liu
,
J.
,
Zong
,
X.
,
Chong
,
D.
, and
Yan
,
J.
,
2015
, “
Experimental Study on the Direct Contact Condensation of the Steam Jet in Subcooled Water Flow in a Rectangular Channel: Flow Patterns and Flow Field
,”
Int. J. Heat Fluid Flow
,
56
, pp.
172
181
.10.1016/j.ijheatfluidflow.2015.07.021
33.
Zong
,
X.
,
Liu
,
J.
,
Yang
,
X.
, and
Yan
,
J.
,
2015
, “
Experimental Study on the Direct Contact Condensation of Steam Jet in Subcooled Water Flow in a Rectangular Mix Chamber
,”
Int. J. Heat Mass Transfer
,
80
, pp.
448
457
.10.1016/j.ijheatmasstransfer.2014.09.050
34.
Yang
,
X.
,
Chong
,
D.
,
Liu
,
J.
, and
Zong
,
X.
,
2016
, “
Pressure Oscillation Induced by Steam Jet Condensation in Subcooled Water Flow in a Channel
,”
Int. J. Heat Mass Transfer
,
98
, pp.
426
437
.10.1016/j.ijheatmasstransfer.2016.03.050
35.
Yang
,
X.
,
Liu
,
J.
,
Liu
,
J.
,
Chen
,
N.
, and
Yan
,
J.
,
2017
, “
Interface Dynamics and Pressure Oscillation of Stable Steam Jet Condensation in Water Flow in a Confined Channel With the Presence of Non-Condensable Gas
,”
Int. J. Heat Mass Transfer
,
111
, pp.
1157
1171
.10.1016/j.ijheatmasstransfer.2017.04.079
36.
Zare
,
S.
,
Jamalkhoo
,
M. H.
, and
Passandideh-Fard
,
M.
,
2018
, “
Experimental Study of Direct Contact Condensation of Steam Jet in Water Flow in a Vertical Pipe With Square Cross Section
,”
Int. J. Multiphase Flow
,
104
, pp.
74
88
.10.1016/j.ijmultiphaseflow.2018.03.009
37.
Pecenko
,
A.
,
2010
, “
Numerical Simulation Methods for Phase-Transitional Flow
,” Ph.D. dissertation, Eindhoven University of Technology, Eindhoven, The Netherlands.
38.
Pellegrini
,
M.
,
Agostinelli
,
G.
,
Okada
,
H.
, and
Naitoh
,
M.
,
2014
, “
Eulerian Two-Phase Flow Modeling of Steam Direct Contact Condensation for the Fukushima Accident Investigation
,”
ASME
Paper No. FEDSM2014-21766. 10.1115/FEDSM2014-21766
39.
Pellegrini
,
M.
,
Agostinelli
,
G.
,
Okada
,
H.
, and
Naitoh
,
M.
,
2014
, “
Eulerian Two-Phase Flow Modeling of Steam Direct Contact Condensation for the Fukushima Accident Investigation
,”
ASME
Paper No. ICONE22-30937. 10.1115/ICONE22-30937
40.
Li
,
S. Q.
,
Wang
,
P.
, and
Lu
,
T.
,
2015
, “
CFD Based Approach for Modeling Steam–Water Direct Contact Condensation in Subcooled Water Flow in a Tee Junction
,”
Prog. Nucl. Energy
,
85
, pp.
729
746
.10.1016/j.pnucene.2015.09.007
41.
de Freitas Duarte
,
B. A.
,
Serfaty
,
R.
, and
da Silveira Neto
,
A.
,
2019
, “
Direct Contact Condensation Jet in Cross-Flow Using Computational Fluid Dynamics
,”
ASME J. Heat Transfer
,
141
(
4
), p.
41501
.10.1115/1.4042779
42.
Gulawani
,
S. S.
,
Joshi
,
J. B.
,
Shah
,
M. S.
,
RamaPrasad
,
C. S.
, and
Shukla
,
D. S.
,
2006
, “
CFD Analysis of Flow Pattern and Heat Transfer in Direct Contact Steam Condensation
,”
Chem. Eng. Sci.
,
61
(
16
), pp.
5204
5220
.10.1016/j.ces.2006.03.032
43.
Gulawani
,
S. S.
,
Dahikar
,
S. K.
,
Mathpati
,
C. S.
,
Joshi
,
J. B.
,
Shah
,
M. S.
,
RamaPrasad
,
C. S.
, and
Shukla
,
D. S.
,
2009
, “
Analysis of Flow Pattern and Heat Transfer in Direct Contact Condensation
,”
Chem. Eng. Sci.
,
64
(
8
), pp.
1719
1738
.10.1016/j.ces.2008.12.020
44.
Dahikar
,
S. K.
,
Sathe
,
M. J.
, and
Joshi
,
J. B.
,
2010
, “
Investigation of Flow and Temperature Patterns in Direct Contact Condensation Using PIV, PLIF and CFD
,”
Chem. Eng. Sci.
,
65
(
16
), pp.
4606
4620
.10.1016/j.ces.2010.05.004
45.
Shah
,
A.
,
Chughtai
,
I. R.
, and
Inayat
,
M. H.
,
2011
, “
Experimental and Numerical Analysis of Steam Jet Pump
,”
Int. J. Multiphase Flow
,
37
(
10
), pp.
1305
1314
.10.1016/j.ijmultiphaseflow.2011.07.008
46.
Shah
,
A.
,
Chughtai
,
I. R.
, and
Inayat
,
M. H.
,
2010
, “
Numerical Simulation of Direct-Contact Condensation From a Supersonic Steam Jet in Subcooled Water
,”
Chin. J. Chem. Eng.
,
18
(
4
), pp.
577
587
.10.1016/S1004-9541(10)60261-3
47.
Zhou
,
L.
,
Liu
,
J.
,
Chong
,
D.
, and
Yan
,
J.
,
2016
, “
Numerical Analysis on Pressure Distribution for Sonic Steam Jet Condensed Into Subcooled Water
,”
Int. J. Heat Mass Transfer
,
99
, pp.
53
64
.10.1016/j.ijheatmasstransfer.2016.03.070
48.
Zhou
,
L.
,
Liu
,
J.
,
Chen
,
W.
,
Chong
,
D.
, and
Yan
,
J.
,
2017
, “
Numerical Investigation on Steam Jet Submerged in Subcooled Water Under Different Ambient Pressures
,”
Int. Commun. Heat Mass Transfer
,
83
, pp.
48
54
.10.1016/j.icheatmasstransfer.2016.11.004
49.
Zhou
,
L.
,
Chong
,
D.
,
Liu
,
J.
, and
Yan
,
J.
,
2017
, “
Numerical Study on Flow Pattern of Sonic Steam Jet Condensed Into Subcooled Water
,”
Ann. Nucl. Energy
,
99
, pp.
206
215
.10.1016/j.anucene.2016.08.024
50.
Zhou
,
L.
,
Wang
,
L.
,
Chong
,
D.
,
Yan
,
J.
, and
Liu
,
J.
,
2017
, “
CFD Analysis to Study the Effect of Non-Condensable Gas on Stable Condensation Jet
,”
Prog. Nucl. Energy
,
98
, pp.
143
152
.10.1016/j.pnucene.2017.03.011
51.
Wang
,
L.
,
Chong
,
D.
,
Zhou
,
L.
,
Chen
,
W.
, and
Yan
,
J.
,
2017
, “
Numerical Simulation on Sonic Steam Jet Condensation in Subcooled Water Through a Double-Hole Nozzle
,”
Int. J. Heat Mass Transfer
,
115
, pp.
143
147
.10.1016/j.ijheatmasstransfer.2017.06.100
52.
Wang
,
L.
,
Yue
,
X.
,
Zhao
,
Q.
,
Chong
,
D.
, and
Yan
,
J.
,
2018
, “
Numerical Investigation on the Effects of Steam and Water Parameters on Steam Jet Condensation Through a Double-Hole Nozzle
,”
Int. J. Heat Mass Transfer
,
126
, pp.
831
842
.10.1016/j.ijheatmasstransfer.2018.05.090
53.
Chen
,
X.
,
Tian
,
M.
,
Qu
,
X.
, and
Zhang
,
Y.
,
2019
, “
Numerical Investigation on the Interfacial Characteristics of Steam Jet Condensation in Subcooled Water Flow in a Restricted Channel
,”
Int. J. Heat Mass Transfer
,
137
, pp.
908
921
.10.1016/j.ijheatmasstransfer.2019.03.165
54.
Anglart
,
H.
, and
Nylund
,
O.
,
1996
, “
CFD Application to Prediction of Void Distribution in Two-Phase Bubbly Flows in Rod Bundles
,”
Nucl. Eng. Des.
,
163
(
1–2
), pp.
81
98
.10.1016/0029-5493(95)01160-9
55.
Kurul
,
N.
,
1991
, “
Multidimensional Effects in Two-Phase Flow Including Phase Change
,” Ph.D. dissertation, Rensselaer Polytechnic Institute, Troy, NY.
56.
Chen
,
X.
,
Tian
,
M.
,
Zhang
,
G.
, and
Liu
,
H.
,
2019
, “
Numerical Simulation on Interfacial Characteristics in Supersonic Steam–Water Injector Using Particle Model Method
,”
Energies
,
12
(
6
), p.
1108
.10.3390/en12061108
57.
Qu
,
X.
,
Sui
,
H.
, and
Tian
,
M.
,
2016
, “
CFD Simulation of Steam–Air Jet Condensation
,”
Nucl. Eng. Des.
,
297
, pp.
44
53
.10.1016/j.nucengdes.2015.11.011
58.
Ji
,
Y.
,
Zhang
,
H.-C.
,
Zhang
,
Y.-N.
,
Wang
,
X.-W.
, and
Quan
,
Y.
,
2016
, “
Computational Fluid Dynamics Simulation of Direct-Contact Condensation Phenomenon of Vapor Jet in Subcooled Water Tank
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
2
(
4
), p.
41004
.10.1115/1.4033280
59.
Qu
,
X.
,
Revankar
,
S. T.
, and
Tian
,
M.
,
2018
, “
Numerical Investigation on Thermal Status of a Scaled-Down Suppression Pool
,”
Nucl. Eng. Des.
,
340
, pp.
183
192
.10.1016/j.nucengdes.2018.10.003
60.
Tanskanen
,
V.
,
Lakehal
,
D.
, and
Puustinen
,
M.
,
2008
, “
Validation of Direct Contact Condensation CFD Models Against Condensation Pool Experiment
,”
Proceedings of the Workshop on Experiments and CFD Code Application to Nuclear Reactor Safety (XCFD4NRS)
, Grenoble, France, Sept. 10–12, p.
1027
.
61.
Patel
,
G.
,
Tanskanen
,
V.
, and
Kyrki-Rajamäki
,
R.
,
2014
, “
Numerical Modelling of Low-Reynolds Number Direct Contact Condensation in a Suppression Pool Test Facility
,”
Ann. Nucl. Energy
,
71
, pp.
376
387
.10.1016/j.anucene.2014.04.009
62.
Pellegrini
,
M.
,
Naitoh
,
M.
,
Josey
,
C.
, and
Baglietto
,
E.
,
2015
, “
Modeling of Rayleigh-Taylor Instability for Steam Direct Contact Condensation
,”
Proceedings of the 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics
(
NURETH-16
), Chicago, IL, Aug. 30–Sept. 4, pp.
3240
3254
.http://glc.ans.org/nureth-16/data/papers/12951.pdf
63.
Chen
,
K.
, and
Richter
,
H. J.
,
1997
, “
Instability Analysis of the Transition From Bubbling to Jetting in a Gas Injected Into a Liquid
,”
Int. J. Multiphase Flow
,
23
(
4
), pp.
699
712
.10.1016/S0301-9322(97)00003-7
64.
Yeoh
,
G. H.
, and
Tu
,
J.
,
2019
,
Computational Techniques for Multiphase Flows
,
Butterworth-Heinemann
,
Oxford, UK
.
65.
Schiller
,
L.
, and
Naumann
,
A.
,
1933
, “
A Drag Coefficient Correlation
,”
Zeit. Ver. Deutsch. Ing.
,
77
, pp.
318
320
.
66.
Ranz
,
W. E.
, and
Marshall
,
W. R.
,
1952
, “
Evaporation From Drops
,”
Chem. Eng. Prog.
,
48
(
3
), pp.
141
146
.
67.
Qu
,
X.
,
Revankar
,
S. T.
, and
Tian
,
M.
,
2017
, “
Numerical Simulation of Bubble Formation and Condensation of Steam Air Mixture Injected in Subcooled Pool
,”
Nucl. Eng. Des.
,
320
, pp.
123
132
.10.1016/j.nucengdes.2017.04.009
68.
Sato
,
Y.
, and
Sekoguchi
,
K.
,
1975
, “
Liquid Velocity Distribution in Two-Phase Bubble Flow
,”
Int. J. Multiphase Flow
,
2
(
1
), pp.
79
95
.10.1016/0301-9322(75)90030-0
69.
ANSYS
,
2013
, “
CFX Solver Theory Guide, Release 15.0
,” ANSYS, Canonsburg, PA.
70.
Kim
,
Y. S.
,
Park
,
J. W.
, and
Song
,
C. H.
,
2004
, “
Investigation of the Steam-Water Direct Contact Condensation Heat Transfer Coefficients Using Interfacial Transport Models
,”
Int. Commun. Heat Mass Transfer
,
31
(
3
), pp.
397
408
.10.1016/j.icheatmasstransfer.2004.02.010
You do not currently have access to this content.