Abstract

To estimate the thermal properties from transient data, a model is needed to produce numerical values with sufficient precision. Iterative regression or other estimation procedures must be applied to evaluate the model again and again. From this perspective, infinite or semi-infinite heat conduction problems are a challenge. Since the analytical solution usually contains improper integrals that need to be computed numerically, computer-evaluation speed is a serious issue. To improve the computation speed with precision maintained, an analytical method has been applied to three-dimensional (3D) cylindrical geometries. In this method, the numerical evaluation time is improved by replacing the integral-containing solution by a suitable finite body series solution. The precision of the series solution may be controlled to a high level and the required computer time may be minimized by a suitable choice of the extent of the finite body. The practical applications for 3D geometries include the line-source method for obtaining thermal properties, the estimation of thermal properties by the laser-flash method, and the estimation of aquifer properties or petroleum-field properties from well-test measurements. This paper is an extension of earlier works on one-dimensional (1D) and two-dimensional (2D) cylindrical geometries. In this paper, the computer-evaluation time for the finite geometry 3D solutions is shown to be hundreds of times faster than the infinite or semi-infinite solution with the precision maintained.

References

1.
McMasters
,
R. L.
,
Dowding
,
K. J.
,
Beck
,
J. V.
, and
Yen
,
D.
,
2002
, “
Methodology to Generate Accurate Solutions for Verification in Transient Three-Dimensional Heat Conduction
,”
J. Numer. Heat Transfer, Part B
,
41
(
6
), pp.
521
541
.10.1080/10407790190053761
2.
 
ASME
,
2009
, “
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,” American Society of Mechanical Engineers, New York, Standard No. ASME V&V 20–2009.
3.
Beck
,
J. V.
,
McMasters
,
R. L.
,
Dowding
,
K. J.
, and
Amos
,
D. E.
,
2006
, “
Intrinsic Verification Methods in Linear Heat Conduction
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
2984
2994
.10.1016/j.ijheatmasstransfer.2006.01.045
4.
Tian
,
T.
, and
Cole
,
K. D.
,
2012
, “
Anisotropic Thermal Conductivity Measurements of Carbon-Fiber/Epoxy Composites
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6530
6537
.10.1016/j.ijheatmasstransfer.2012.06.059
5.
Guo
,
J.
,
Wang
,
X.
, and
Wang
,
T.
,
2007
, “
Thermal Characterization of Microscale Conductive and Nonconductive Wires Using Transient Electrothermal Technique
,”
J. Appl. Phys.
,
101
(
6
), p.
063537
.10.1063/1.2714679
6.
Woodbury
,
K. A.
,
Beck
,
J. V.
, and
Najafi
,
H.
,
2014
, “
Filter Solution of Inverse Heat Conduction Problem Using Measured Temperature History as Remote Boundary Condition
,”
Int. J. Heat Mass Transfer
,
72
, pp.
139
147
.10.1016/j.ijheatmasstransfer.2013.12.073
7.
Beck
,
J. V.
,
Blackwell
,
B.
, and
St. Clair
,
C. R.
, Jr.
,
1985
,
Inverse Heat Conduction: Ill-Posed Problems
,
Wiley
,
Hoboken, NJ
.
8.
Pi
,
T.
,
Cole
,
K.
, and
Beck
,
J.
,
2017
, “
Efficient Numerical Evaluation of Exact Solutions for One-Dimensional and Two-Dimensional Infinite Cylindrical Heat Conduction Problems
,”
ASME J. Heat Transfer
,
139
(
12
), p.
121301
.10.1115/1.4037081
9.
Cheng
,
W.-L.
,
Huang
,
Y.-H.
,
Lu
,
D.-T.
, and
Yin
,
H.-R.
,
2011
, “
A Novel Analytical Transient Heat-Conduction Time Function for Heat Transfer in Steam Injection Wells Considering the Wellbore Heat Capacity
,”
Energy
,
36
(
7
), pp.
4080
4088
.10.1016/j.energy.2011.04.039
10.
Yeh
,
H.-D.
,
Yang
,
S.-Y.
, and
Peng
,
H.-Y.
,
2003
, “
A New Closed-Form Solution for a Radial Two-Layer Drawdown Equation for Groundwater Under Constant-Flux Pumping in a Finite-Radius Well
,”
Adv. Water Resour.
,
26
(
7
), pp.
747
757
.10.1016/S0309-1708(03)00046-0
11.
Clow
,
G. D.
,
2015
, “
A Green's Function Approach for Assessing the Thermal Disturbance Caused by Drilling Deep Boreholes in Rock or Ice
,”
Geophys. J. Int.
,
203
(
3
), pp.
1877
1895
.10.1093/gji/ggv415
12.
Lee
,
Y.
,
Ku
,
D. Y.
,
Park
,
Y.-H.
,
Ahn
,
M.-Y.
, and
Cho
,
S.
,
2017
, “
Sample Holder Design for Effective Thermal Conductivity Measurement of Pebble-Bed Using Laser Flash Method
,”
Fusion Eng. Des.
,
124
, pp.
995
998
.10.1016/j.fusengdes.2017.05.090
13.
Wang
,
L.
,
Gandorfer
,
M.
,
Selvam
,
T.
, and
Schwieger
,
W.
,
2018
, “
Determination of Faujasite-Type Zeolite Thermal Conductivity From Measurements on Porous Composites by Laser Flash Method
,”
Mater. Lett.
,
221
, pp.
322
325
.10.1016/j.matlet.2018.03.157
14.
Zhang
,
W.
,
Yang
,
H.
,
Diao
,
N.
,
Lu
,
L.
, and
Fang
,
Z.
,
2016
, “
Exploration on the Reverse Calculation Method of Groundwater Velocity by Means of the Moving Line Heat Source
,”
Int. J. Therm. Sci.
,
99
, pp.
52
63
.10.1016/j.ijthermalsci.2015.08.001
15.
Zhang
,
X.
,
Xu
,
W.
,
Hu
,
L.
,
Liu
,
X.
,
Zhang
,
X.
, and
Xu
,
W.
,
2016
, “
A New Mathematical Method for Quantifying Trajectory of Buoyant Line-Source Gaseous Fuel Jet Diffusion Flames in Cross Air Flows
,”
Fuel
,
177
, pp.
107
112
.10.1016/j.fuel.2016.02.092
16.
Nabil
,
M.
, and
Khodadadi
,
J. M.
,
2017
, “
Computational/Analytical Study of the Transient Hot Wire-Based Thermal Conductivity Measurements Near Phase Transition
,”
Int. J. Heat Mass Transfer
,
111
, pp.
895
907
.10.1016/j.ijheatmasstransfer.2017.04.043
17.
Vélez
,
C.
,
Reding
,
B.
,
Ortiz de Zárate
,
J. M.
, and
Khayet
,
M.
,
2019
, “
Thermal Conductivity of Water Ih-Ice Measured With Transient Hot-Wires of Different Lengths
,”
Appl. Therm. Eng.
,
149
, pp.
788
797
.10.1016/j.applthermaleng.2018.12.073
18.
Cole
,
K. D.
,
Beck
,
J. V.
,
Haji-Sheikh
,
A.
, and
Litkouhi
,
B.
,
2011
,
Heat Conduction Using Green's Functions
, 2nd ed.,
CRC Press
,
Boco Raton, FL
.
19.
Beck
,
J. V.
, and
Litkouhi
,
B.
,
1988
, “
Heat Conduction Number System
,”
Int. J. Heat Mass Transfer
,
31
(
3
), pp.
505
515
.10.1016/0017-9310(88)90032-4
20.
 
Cole
,
K.
,
Keith
,
W.
,
Amos
,
D. E.
,
Beck
,
J. V.
,
Crittenden
,
P. E.
,
Monte
,
F. D.
,
Haji-Sheikh
,
A.
,
Guimaraes
,
G.
,
McMasters
,
R.
, and
Roberty
,
N.
,
2015
, “
EXACT Analytical Conduction Toolbox
,” University of Nebraska–Lincoln, Lincoln, NE, accessed Jan. 7, 2020, http://exact.unl.edu/exact/about/personnel.php
21.
Pi
,
T.
,
2018
, “
Efficient Numerical Evaluation of Exact Solution for 1D, 2D and 3D Infinite Cylindrical Heat Conduction Problem
,”
Ph.D. dissertation
, University of Nebraska Lincoln, Lincoln, NE.https://search.proquest.com/openview/94a35196866a58eb3ade7c7757eedc6c/1?pq-origsite=gscholar&cbl=18750&diss=y
22.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
,
2007
,
Numerical Recipes: The Art of Scientific Computing
, 3rd ed.,
Cambridge University Press
,
Cambridge, MA
.
You do not currently have access to this content.