Abstract

Experimental investigation was carried out to study heat transfer and fluid flow in high porosity (93%) thin metal foams (MFs) subjected to array jet impingement, under maximum and intermediate crossflow exit schemes. Separate effects of pore-density (pores per inch: PPI) and jet-to-target spacing (z/d) have been studied. To this end, for a fixed pore-density of 40 PPI foams, three different jet-to-target spacings (z/d = 1, 2, 6) were investigated, and for a fixed jet-to-target spacing (z/d) of 6, three different pore-density of 5, 20, and 40 PPI were investigated. The jet diameter-based Reynolds number was varied between 3000 and 12,000. Both flow and heat transfer experiments were carried out to characterize the flow distribution, crossflow mass flux accumulation, and local Nusselt numbers for different jet impingement configurations. The heat transfer results were obtained through steady-state experiments. Local flow measurements show that, as jet-to-target distance decreases, the mass flux distributions were increasingly skewed with higher mass flux distributed toward the exit(s). It was observed that Nusselt number increased with increasing pore density at a fixed jet-to-target spacing and reduced with increase in jet to target spacing at a fixed pore density. Intermediate crossflow had higher heat transfer than maximum crossflow with significantly lower pumping power. For a fixed pumping power, z/d = 2, 40 ppi foam provided an average heat transfer enhancement of 35% over the corresponding baseline configuration for intermediate crossflow scheme and was found to be the optimum configuration.

References

1.
Sathe
,
S.
, and
Sammakia
,
B.
,
1998
, “
A Review of Recent Developments in Some Practical Aspects of Air-Cooled Electronic Packages
,”
ASME J. Heat Transfer
,
120
(
4
), pp.
830
839
.10.1115/1.2825902
2.
Zhao
,
C. Y.
,
2012
, “
Review on Thermal Transport in High Porosity Cellular Metal Foams With Open Cells
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3618
3632
.10.1016/j.ijheatmasstransfer.2012.03.017
3.
Hunt
,
M. L.
, and
Tien
,
C. L.
,
1988
, “
Effects of Thermal Dispersion on Forced Convection in Fibrous Media
,”
Int. J. Heat Mass Transfer
,
31
(
2
), pp.
301
309
.10.1016/0017-9310(88)90013-0
4.
Lu
,
T. J.
,
Stone
,
H. A.
, and
Ashby
,
M. F.
,
1998
, “
Heat Transfer in Open-Cell Metal Foams
,”
Acta Mater.
,
46
(
10
), pp.
3619
3635
.10.1016/S1359-6454(98)00031-7
5.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
1999
, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
466
471
.10.1115/1.2826001
6.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
557
565
.10.1115/1.1287793
7.
Bhattacharya
,
A.
, and
Mahajan
,
R. L.
,
2002
, “
Finned Metal Foam Heat Sinks for Electronics Cooling in Forced Convection
,”
Trans.-Am. Soc. Mech. Eng. J. Electron. Packag.
,
124
(
3
), pp.
155
163
.10.1115/1.1464877
8.
Diani
,
A.
,
Bodla
,
K. K.
,
Rossetto
,
L.
, and
Garimella
,
S. V.
,
2015
, “
Numerical Investigation of Pressure Drop and Heat Transfer Through Reconstructed Metal Foams and Comparison Against Experiments
,”
Int. J. Heat Mass Transfer
,
88
, pp.
508
515
.10.1016/j.ijheatmasstransfer.2015.04.038
9.
Dukhan
,
N.
,
2006
, “
Correlations for the Pressure Drop for Flow Through Metal Foam
,”
Exp. Fluids
,
41
(
4
), pp.
665
672
.10.1007/s00348-006-0194-x
10.
Dukhan
,
N.
, and
Chen
,
K. C.
,
2007
, “
Heat Transfer Measurements in Metal Foam Subjected to Constant Heat Flux
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
624
631
.10.1016/j.expthermflusci.2007.08.004
11.
Florschuetz, L. W., Truman, C. R., and Metzger, D. E., 1981, “Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow,”
ASME J. Heat Transfer
, 103(2), pp. 337–342.10.1115/1.3244463
12.
Obot
,
N. T.
, and
Trabold
,
T. A.
,
1987
, “
Impingement Heat Transfer Within Arrays of Circular Jets: Part 1—Effects of Minimum, Intermediate, and Complete Crossflow for Small and Large Spacings
,”
ASME J. Heat Transfer
,
109
(
4
), pp.
872
879
.10.1115/1.3248197
13.
Viskanta, R., 1993, “Heat Transfer to Impinging Isothermal Gas and Flame Jets,”
Exp. Thermal Fluid Sci.
, 6(2), pp. 111–134.10.1016/0894-1777(93)90022-B
14.
Li
,
W.
,
Li
,
X.
,
Yang
,
L.
,
Ren
,
J.
,
Jiang
,
H.
, and
Ligrani
,
P.
,
2017
, “
Effect of Reynolds Number, Hole Patterns, and Hole Inclination on Cooling Performance of an Impinging Jet Array—Part I: Convective Heat Transfer Results and Optimization
,”
ASME J. Turbomach.
,
139
(
4
), p.
041002
.10.1115/1.4035045
15.
Ji
,
Y.
,
Singh
,
P.
,
Ekkad
,
S. V.
, and
Zang
,
S.
,
2017
, “
Effect of Crossflow Regulation by Varying Jet Diameters in Streamwise Direction on Jet Impingement Heat Transfer Under Maximum Crossflow Condition
,”
Numer. Heat Transfer, Part A
,
72
(
8
), pp.
579
599
.10.1080/10407782.2017.1394136
16.
Kim
,
S. Y.
,
Lee
,
M. H.
, and
Lee
,
K. S.
,
2005
, “
Heat Removal by Aluminum-Foam Heat Sinks in a Multi-Air Jet Impingement
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
1
), pp.
142
148
.10.1109/TCAPT.2004.843169
17.
Wong
,
K. C.
,
2012
, “
Thermal Analysis of a Metal Foam Subject to Jet Impingement
,”
Int. Commun. Heat Mass Transfer
,
39
(
7
), pp.
960
965
.10.1016/j.icheatmasstransfer.2012.05.021
18.
Jeng
,
T. M.
, and
Tzeng
,
S. C.
,
2005
, “
Numerical Study of Confined Slot Jet Impinging on Porous Metallic Foam Heat Sink
,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
4685
4694
.10.1016/j.ijheatmasstransfer.2005.06.032
19.
Jeng
,
T. M.
, and
Tzeng
,
S. C.
,
2007
, “
Experimental Study of Forced Convection in Metallic Porous Block Subject to a Confined Slot Jet
,”
Int. J. Therm. Sci.
,
46
(
12
), pp.
1242
1250
.10.1016/j.ijthermalsci.2007.01.007
20.
Marafie
,
A.
,
Khanafer
,
K.
,
Al-Azmi
,
B.
, and
Vafai
,
K.
,
2008
, “
Non-Darcian Effects on the Mixed Convection Heat Transfer in a Metallic Porous Block With a Confined Slot Jet
,”
Numer. Heat Transfer, Part A
,
54
(
7
), pp.
665
685
.10.1080/10407780802339064
21.
Saeid
,
N. H.
,
Hasan
,
N.
, and
Ali
,
M. H. B. H. M.
,
2018
, “
Effect of the Metallic Foam Heat Sink Shape on the Mixed Convection Jet Impingement Cooling of a Horizontal Surface
,”
J. Porous Media
,
21
(
4
), pp.
295
309
.10.1615/JPorMedia.v21.i4.10
22.
Byon
,
C.
,
2015
, “
Heat Transfer Characteristics of Aluminum Foam Heat Sinks Subject to an Impinging Jet Under Fixed Pumping Power
,”
Int. J. Heat Mass Transfer
,
84
, pp.
1056
1060
.10.1016/j.ijheatmasstransfer.2015.01.025
23.
Kuang
,
J. J.
,
Kim
,
T.
,
Xu
,
M. L.
, and
Lu
,
T. J.
,
2012
, “
Ultralightweight Compact Heat Sinks With Metal Foams Under Axial Fan Flow Impingement
,”
Heat Transfer Eng.
,
33
(
7
), pp.
642
650
.10.1080/01457632.2012.630270
24.
Shih
,
W. H.
,
Chiu
,
W. C.
, and
Hsieh
,
W. H.
,
2006
, “
Height Effect on Heat-Transfer Characteristics of Aluminum-Foam Heat Sinks
,”
ASME J. Heat Transfer
,
128
(
6
), pp.
530
537
.10.1115/1.2188461
25.
Shih
,
W. H.
,
Chou
,
F. C.
, and
Hsieh
,
W. H.
,
2007
, “
Experimental Investigation of the Heat Transfer Characteristics of Aluminum-Foam Heat Sinks With Restricted Flow Outlet
,”
ASME J. Heat Transfer
,
129
(
11
), pp.
1554
1563
.10.1115/1.2759972
26.
Feng
,
S. S.
,
Kuang
,
J. J.
,
Wen
,
T.
,
Lu
,
T. J.
, and
Ichimiya
,
K.
,
2014
, “
An Experimental and Numerical Study of Finned Metal Foam Heat Sinks Under Impinging Air Jet Cooling
,”
Int. J. Heat Mass Transfer
,
77
, pp.
1063
1074
.10.1016/j.ijheatmasstransfer.2014.05.053
27.
Feng
,
S. S.
,
Kuang
,
J. J.
,
Lu
,
T. J.
, and
Ichimiya
,
K.
,
2015
, “
Heat Transfer and Pressure Drop Characteristics of Finned Metal Foam Heat Sinks Under Uniform Impinging Flow
,”
ASME J. Electron. Packag.
,
137
(
2
), p.
021014
.10.1115/1.4029722
28.
Wang
,
J.
,
Kong
,
H.
,
Xu
,
Y.
, and
Wu
,
J.
,
2019
, “
Experimental Investigation of Heat Transfer and Flow Characteristics in Finned Copper Foam Heat Sinks Subjected to Jet Impingement Cooling
,”
Appl. Energy
,
241
, pp.
433
443
.10.1016/j.apenergy.2019.03.040
29.
Sung
,
H. C.
, and
Liu
,
Y. H.
,
2017
, “
Heat Transfer in Rectangular Channels With Porous Wire Mesh Under Impinging Jet Conditions
,”
Int. J. Therm. Sci.
,
122
, pp.
92
101
.10.1016/j.ijthermalsci.2017.08.010
30.
Rallabandi
,
A. P.
,
Rhee
,
D. H.
,
Gao
,
Z.
, and
Han
,
J. C.
,
2010
, “
Heat Transfer Enhancement in Rectangular Channels With Axial Ribs or Porous Foam Under Through Flow and Impinging Jet Conditions
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4663
4671
.10.1016/j.ijheatmasstransfer.2010.06.027
31.
Singh, P., Zhang, M., Pandit, J., and Mahajan, R. L.
, 2018, “Array Jet Impingement Onto High Porosity Thin Metal Foams at Zero Jet-to-Foam Spacing,”
ASME
Paper No. IMECE2018-87915.10.1115/IMECE2018-87915
32.
Madhavan
,
S.
,
Singh
,
P.
, and
Ekkad
,
S.
,
2019
, “
Jet Impingement Heat Transfer Enhancement by Packing High-Porosity Thin Metal Foams Between Jet Exit Plane and Target Surface
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
6
), p.
061016
.10.1115/1.4043470
33.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2002
, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
.10.1016/S0017-9310(01)00220-4
34.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Thermal Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
35.
Lytle
,
D.
, and
Webb
,
B. W.
,
1994
, “
Air Jet Impingement Heat Transfer at Low Nozzle-Plate Spacings
,”
Int. J. Heat Mass Transfer
,
37
(
12
), pp.
1687
1697
.10.1016/0017-9310(94)90059-0
36.
Singh
,
P.
, and
Ekkad
,
S. V.
,
2017
, “
Effects of Spent Air Removal Scheme on Internal-Side Heat Transfer in an Impingement-Effusion System at Low Jet-to-Target Plate Spacing
,”
Int. J. Heat Mass Transfer
,
108
, pp.
998
1010
.10.1016/j.ijheatmasstransfer.2016.12.104
37.
Hsu
,
C. T.
, and
Cheng
,
P.
,
1990
, “
Thermal Dispersion in a Porous Medium
,”
Int. J. Heat Mass Transfer
,
33
(
8
), pp.
1587
1597
.10.1016/0017-9310(90)90015-M
38.
Yakkatelli
,
R.
,
Wu
,
Q.
, and
Fleischer
,
A. S.
,
2010
, “
A Visualization Study of the Flow Dynamics of a Single Round Jet Impinging on Porous Media
,”
Exp. Thermal Fluid Science
,
34
(
8
), pp.
1008
1015
.10.1016/j.expthermflusci.2010.03.004
39.
Singh
,
P.
,
Nithyanandam
,
K.
,
Zhang
,
M.
, and
Mahajan
,
R. L.
,
2020
, “
The Effect of Metal Foam Thickness on Jet Array Impingement Heat Transfer in High-Porosity Aluminum Foams
,”
ASME J. Heat Transfer
,
142
(
5
), p. 052301.10.1115/1.4045640
You do not currently have access to this content.