Abstract

Double-boundary layer theory was adopted to investigate the distributions of the liquid film, gas film, heat transfer coefficient, and condensate mass fluxes around a horizontal tube for vapor condensation with noncondensable gases like steam–air and steam–CO2 mixtures under free convection. The investigation considered the effects of the noncondensable gas concentration, surface subcooling temperature, and pressure. The thicknesses of the liquid and gas films increase gradually along the wall from top to bottom, whereas the local heat transfer coefficient and the condensate mass flux decrease. The film thicknesses do not change significantly around the upper part of the tube but increase sharply around the lower part. The liquid film thicknesses, gas film thicknesses, condensate mass fluxes, and heat transfer coefficients of steam–air systems are compared with those of steam–CO2 systems. The condensate mass flux in the steam–air system is smaller than that of steam–CO2 system under the condition of the same surface subcooling and gas mass fraction because air has more moles of molecules in the mixture than CO2 and the steam more easily diffuses through CO2 than through air. The predicted average condensation heat transfer coefficients agree well with the available experimental data.

References

1.
Xu
,
H.
,
Sun
,
Z.
,
Gu
,
H.
, and
Li
,
H.
,
2016
, “
Experimental Study on the Effect of Wall-Subcooling on Condensation Heat Transfer in the Presence of Noncondensable Gases in a Horizontal Tube
,”
Ann. Nucl. Energy
,
90
, pp.
9
21
.10.1016/j.anucene.2015.11.039
2.
Siddique
,
M.
,
Golay
,
M. W.
, and
Kazimi
,
M. S.
,
1993
, “
Local Heat Transfer Coefficients for Forced-Convection Condensation of Steam in a Vertical Tube in the Presence of a Noncondensable Gas
,”
Nucl. Technol.
,
102
(
3
), pp.
386
402
.10.13182/NT93-A17037
3.
Zhu
,
A. M.
,
Wang
,
S. C.
,
Sun
,
J. X.
,
Xie
,
L. X.
, and
Wang
,
Z.
,
2007
, “
Effects of High Fractional Noncondensable Gas on Condensation in the Dewvaporation Desalination Process
,”
Desalination
,
214
(
1–3
), pp.
128
137
.10.1016/j.desal.2006.08.017
4.
Colburn
,
A. P.
, and
Hougen
,
O. A.
,
1934
, “
Design of Cooler Condensers for Mixtures of Vapors With Noncondensing Gases
,”
Ind. Eng. Chem.
,
26
(
11
), pp.
1178
1182
.10.1021/ie50299a011
5.
Gu
,
H. F.
,
Chen
,
Q.
,
Wang
,
H. J.
, and
Zhang
,
H. Q.
,
2015
, “
Condensation of a Hydrocarbon in the Presence of a Non-Condensable Gas: Heat and Mass Transfer
,”
Appl. Therm. Eng.
,
91
, pp.
938
945
.10.1016/j.applthermaleng.2015.08.092
6.
Ge
,
M.
,
Zhao
,
J.
, and
Wang
,
S.
,
2013
, “
Experimental Investigation of Steam Condensation With High Concentration CO2 on a Horizontal Tube
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
334
343
.10.1016/j.applthermaleng.2013.08.013
7.
Ge
,
M.
,
Wang
,
S.
,
Zhao
,
J.
,
Zhao
,
Y.
, and
Liu
,
L.
,
2016
, “
Condensation of Steam With High CO2 Concentration on a Vertical Plate
,”
Exp. Therm. Fluid Sci.
,
75
, pp.
147
155
.10.1016/j.expthermflusci.2016.02.008
8.
Huhtiniemi
,
I. K.
, and
Corradini
,
M. L.
,
1993
, “
Condensation in the Presence of Noncondensable Gases
,”
Nucl. Eng. Des.
,
141
(
3
), pp.
429
446
.10.1016/0029-5493(93)90130-2
9.
Lee
,
W. C.
, and
Rose
,
J. W.
,
1984
, “
Forced Convection Film Condensation on a Horizontal Tube With and Without Non-Condensing Gases
,”
Int. J. Heat Mass Transfer
,
27
(
4
), pp.
519
528
.10.1016/0017-9310(84)90025-5
10.
Briggs
,
A.
, and
Sabaratnam
,
S.
,
2003
, “
Condensation of Steam in the Presence of Air on a Single Tube and a Tube Bank
,”
Int. J. Energy Res.
,
27
(
4
), pp.
301
314
.10.1002/er.876
11.
Othmer
,
D. F.
,
1929
, “
The Condensation of Steam
,”
Ind. Eng. Chem.
,
21
(
6
), pp.
576
583
.10.1021/ie50234a018
12.
Su
,
J.
,
Sun
,
Z.
,
Ding
,
M.
, and
Fan
,
G.
,
2014
, “
Analysis of Experiments for the Effect of Noncondensable Gases on Steam Condensation Over a Vertical Tube External Surface Under Low Wall Subcooling
,”
Nucl. Eng. Des.
,
278
, pp.
644
650
.10.1016/j.nucengdes.2014.07.022
13.
Dehbi
,
A. A.
,
1991
, “
The Effects of Noncondensable Gases on Steam Condensation Under Turbulent Natural Convection Conditions
,” Doctoral dissertation, Massachusetts Institute of Technology, Cambridge, MA.
14.
Ali
,
H.
,
Wang
,
H. S.
,
Briggs
,
A.
, and
Rose
,
J. W.
,
2013
, “
Effects of Vapor Velocity and Pressure on Marangoni Condensation of Steam-Ethanol Mixtures on a Horizontal Tube
,”
ASME J. Heat Transfer
,
135
(
3
), p.
031502
.10.1115/1.4007893
15.
Siddique
,
M.
,
1992
, “
The Effects of Noncondensable Gases on Steam Condensation Under Forced Convection Conditions
,” Doctoral dissertation, Massachusetts Institute of Technology, Cambridge, MA.
16.
Mamyoda
,
T.
, and
Asano
,
K.
,
1994
, “
Experimental Study of Condensation of Vapors in the Presence of Noncondensable Gas on a Short Horizontal Tube
,”
J. Chem. Eng. Jpn.
,
27
(
4
), pp.
485
491
.10.1252/jcej.27.485
17.
Murase
,
T.
,
Wang
,
H. S.
, and
Rose
,
J. W.
,
2007
, “
Marangoni Condensation of Steam–Ethanol Mixtures on a Horizontal Tube
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
3774
3779
.10.1016/j.ijheatmasstransfer.2007.02.011
18.
Tang
,
G. H.
,
Hu
,
H. W.
,
Zhuang
,
Z. N.
, and
Tao
,
W. Q.
,
2012
, “
Film Condensation Heat Transfer on a Horizontal Tube in Presence of a Noncondensable Gas
,”
Appl. Therm. Eng.
,
36
, pp.
414
425
.10.1016/j.applthermaleng.2011.10.058
19.
Wang
,
W. C.
,
Yu
,
C.
, and
Wang
,
B. X.
,
1995
, “
Condensation Heat Transfer of a Non-Azeotropic Binary Mixture on a Horizontal Tube
,”
Int. J. Heat Mass Transfer
,
38
(
2
), pp.
233
240
.10.1016/0017-9310(95)90007-1
20.
Chen
,
C. K.
, and
Lin
,
Y. T.
,
2009
, “
Laminar Film Condensation From a Downward-Flowing Steam-Air Mixture Onto a Horizontal Circular Tube
,”
Appl. Math. Modell.
,
33
(
4
), pp.
1944
1956
.10.1016/j.apm.2008.05.003
21.
Chen
,
C. K.
, and
Lin
,
Y. T.
,
2009
, “
Turbulent Film Condensation in the Presence of Non-Condensable Gases Over a Horizontal Tube
,”
Int. J. Therm. Sci.
,
48
(
9
), pp.
1777
1785
.10.1016/j.ijthermalsci.2009.02.003
22.
Li
,
H.
, and
Peng
,
W.
,
2014
, “
A Study on Gas–Liquid Film Thicknesses and Heat Transfer Characteristics of Vapor–Gas Condensation Outside a Horizontal Tube
,”
ASME J. Heat Transfer
,
136
(
2
), p.
021501
.10.1115/1.4025501
23.
Peterson
,
P. F.
,
Schrock
,
V. E.
, and
Kageyama
,
T.
,
1993
, “
Diffusion Layer Theory for Turbulent Vapor Condensation With Noncondensable Gases
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
998
1003
.10.1115/1.2911397
24.
Herranz
,
L. E.
,
Anderson
,
M. H.
, and
Corradini
,
M. L.
,
1998
, “
A Diffusion Layer Model for Steam Condensation Within the AP600 Containment
,”
Nucl. Eng. Des.
,
183
(
1–2
), pp.
133
150
.10.1016/S0029-5493(98)00164-2
25.
Peterson
,
P. F.
,
2000
, “
Diffusion Layer Modeling for Condensation With Multicomponent Noncondensable Gases
,”
ASME J. Heat Transfer
,
122
(
4
), pp.
716
720
.10.1115/1.1318215
26.
Ganguli
,
A.
,
Patel
,
A. G.
,
Maheshwari
,
N. K.
, and
Pandit
,
A. B.
,
2008
, “
Theoretical Modeling of Condensation of Steam Outside Different Vertical Geometries (Tube, Flat Plates) in the Presence of Noncondensable Gases Like Air and Helium
,”
Nucl. Eng. Des.
,
238
(
9
), pp.
2328
2340
.10.1016/j.nucengdes.2008.02.016
27.
Liao
,
Y.
, and
Vierow
,
K.
,
2007
, “
A Generalized Diffusion Layer Model for Condensation of Vapor With Noncondensable Gases
,”
ASME J. Heat Transfer
,
129
(
8
), pp.
988
994
.10.1115/1.2728907
28.
Sparrow
,
E. M.
, and
Lin
,
S. H.
,
1964
, “
Condensation Heat Transfer in the Presence of a Noncondensable Gas
,”
ASME J. Heat Transfer
,
86
(
3
), pp.
430
436
.10.1115/1.3688714
29.
Minkowycz
,
W. J.
, and
Sparrow
,
E. M.
,
1966
, “
Condensation Heat Transfer in the Presence of Noncondensables, Interfacial Resistance, Superheating, Variable Properties, and Diffusion
,”
Int. J. Heat Mass Transfer
,
9
(
10
), pp.
1125
1144
.10.1016/0017-9310(66)90035-4
30.
Fujii
,
T.
, 1991,
Theory of Laminar Film Condensation
,
Springer-Verlag, New York.
31.
Caruso
,
G.
, and
Di Maio
,
D. V.
,
2014
, “
Heat and Mass Transfer Analogy Applied to Condensation in the Presence of Noncondensable Gases Inside Inclined Tubes
,”
Int. J. Heat Mass Transfer
,
68
, pp.
401
414
.10.1016/j.ijheatmasstransfer.2013.09.049
32.
Dehbi
,
A.
,
2015
, “
A Generalized Correlation for Steam Condensation Rates in the Presence of Air Under Turbulent Free Convection
,”
Int. J. Heat Mass Transfer
,
86
, pp.
1
15
.10.1016/j.ijheatmasstransfer.2015.02.034
33.
Dehbi
,
A.
, and
Guentay
,
S.
,
1997
, “
A Model for the Performance of a Vertical Tube Condenser in the Presence of Noncondensable Gases
,”
Nucl. Eng. Des.
,
177
(
1–3
), pp.
41
52
.10.1016/S0029-5493(97)00184-2
34.
Rose
,
J. W.
,
1980
, “
Approximate Equations for Forced-Convection Condensation in the Presence of a Non-Condensing Gas on a Flat Plate and Horizontal Tube
,”
Int. J. Heat Mass Transfer
,
23
(
4
), pp.
539
546
.10.1016/0017-9310(80)90095-2
35.
Dehbi
,
A.
,
2013
, “
On the Adequacy of Wall Functions to Predict Condensation Rates From Steam-Noncondensable Gas Mixtures
,”
Nucl. Eng. Des.
,
265
, pp.
25
34
.10.1016/j.nucengdes.2013.07.014
36.
Dehbi
,
A.
,
Janasz
,
F.
, and
Bell
,
B.
,
2013
, “
Prediction of Steam Condensation in the Presence of Noncondensable Gases Using a CFD-Based Approach
,”
Nucl. Eng. Des.
,
258
, pp.
199
210
.10.1016/j.nucengdes.2013.02.002
37.
Li
,
J. D.
,
2013
, “
CFD Simulation of Water Vapour Condensation in the Presence of Non-Condensable Gas in Vertical Cylindrical Condensers
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
708
721
.10.1016/j.ijheatmasstransfer.2012.10.051
38.
Fu
,
W.
,
Li
,
X.
,
Wu
,
X.
, and
Corradini
,
M. L.
,
2016
, “
Numerical Investigation of Convective Condensation With the Presence of Non-Condensable Gases in a Vertical Tube
,”
Nucl. Eng. Des.
,
297
, pp.
197
207
.10.1016/j.nucengdes.2015.11.034
39.
Zschaeck
,
G.
,
Frank
,
T.
, and
Burns
,
A. D.
,
2014
, “
CFD Modelling and Validation of Wall Condensation in the Presence of Non-Condensable Gases
,”
Nucl. Eng. Des.
,
279
, pp.
137
146
.10.1016/j.nucengdes.2014.03.007
40.
Mimouni
,
S.
,
Foissac
,
A.
, and
Lavieville
,
J.
,
2011
, “
CFD Modelling of Wall Steam Condensation by a Two-Phase Flow Approach
,”
Nucl. Eng. Des.
,
241
(
11
), pp.
4445
4455
.10.1016/j.nucengdes.2010.09.020
41.
Vyskocil
,
L.
,
Schmid
,
J.
, and
Macek
,
J.
,
2014
, “
CFD Simulation of Air–Steam Flow With Condensation
,”
Nucl. Eng. Des.
,
279
, pp.
147
157
.10.1016/j.nucengdes.2014.02.014
42.
Lei
,
Y.
, and
Chen
,
Z.
,
2019
, “
Numerical Study of Condensation Flow Regimes in Presence of Non-Condensable Gas in Minichannels
,”
Int. Commun. Heat Mass Transfer
,
106
, pp.
1
8
.10.1016/j.icheatmasstransfer.2019.04.001
43.
Su
,
J.
,
Sun
,
Z.
, and
Zhang
,
D.
,
2014
, “
Numerical Analysis of Steam Condensation Over a Vertical Surface in Presence of Air
,”
Ann. Nucl. Energy
,
72
, pp.
268
276
.10.1016/j.anucene.2014.05.019
44.
Asano
,
K.
,
2007
,
Mass Transfer: From Fundamentals to Modern Industrial Applications
, Wiley-VCH Verlag, Weinheim, Germany.
45.
Li
,
H.
,
Peng
,
W.
,
Liu
,
Y.
, and
Ma
,
C.
,
2015
, “
Effect of Tube Geometry and Curvature on Film Condensation in the Presence of a Noncondensable Gas
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011001
.10.1115/1.4028345
46.
Mickley
,
H. S.
,
1954
,
R. C.
,
Ross
,
A. L.
,
Squyers
,
W. E.
, and
Stewart
, “
Heat, Mass, and Momentum Transfer for Flow Over a Flat Plate With Blowing or Suction
,” NACA, Washington, DC, Report No. NACA-TN-3208.
47.
Mukhopadhyay
,
S.
,
Som
,
S. K.
, and
Chakraborty
,
S.
,
2007
, “
A Generalized Mathematical Description for Comparative Assessment of Various Horizontal Polar Tube Geometries With Regard to External Film Condensation in Presence of Non-Condensable Gases
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3437
3446
.10.1016/j.ijheatmasstransfer.2007.01.042
48.
Som
,
S. K.
, and
Chakraborty
,
S.
,
2006
, “
Film Condensation in Presence of Non-Condensable Gases Over Horizontal Tubes With Progressively Increasing Radius of Curvature in the Direction of Gravity
,”
Int. J. Heat Mass Transfer
,
49
(
3–4
), pp.
594
600
.10.1016/j.ijheatmasstransfer.2005.09.001
49.
Schlichting
,
H.
, and
Gersten
,
K.
,
2016
,
Boundary-Layer Theory
, 9th ed., Springer-Verlag, Berlin, Heidelberg, Germany.
50.
DrewMcAdams
,
W. H.
,
1954
,
Heat Transmission
, 3rd ed.,
McGraw-Hill
,
New York
.
51.
Rose
,
J. W.
,
1998
, “
Interphase Matter Transfer, the Condensation Coefficient and Dropwise Condensation
,”
Heat Transfer Conference
, Kyongju, Korea, pp.
89
104
.
52.
Hu
,
H. W.
, and
Tang
,
G. H.
,
2014
, “
Theoretical Investigation of Stable Dropwise Condensation Heat Transfer on a Horizontal Tube
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
671
679
.10.1016/j.applthermaleng.2013.10.022
53.
Yin
,
Z.
,
Guo
,
Y.
,
Sunden
,
B.
,
Wang
,
Q.
, and
Zeng
,
M.
,
2015
, “
Numerical Simulation of Laminar Film Condensation in a Horizontal Minitube With and Without Non-Condensable Gas by the VOF Method
,”
Numer. Heat Transfer, Part A
,
68
(
9
), pp.
958
977
.10.1080/10407782.2015.1023143
54.
Lu
,
J.
,
Cao
,
H.
, and
Li
,
J.
,
2019
, “
Experimental Study of Condensation Heat Transfer of Steam in the Presence of Non-Condensable Gas CO2 on a Horizontal Tube at Sub-Atmospheric Pressure
,”
Exp. Therm. Fluid Sci.
,
105
, pp.
278
288
.10.1016/j.expthermflusci.2019.04.004
You do not currently have access to this content.