Techniques based on temperature-sensitive paints (TSP) to measure time-resolved temperature and heat transfer distributions at the interface between a wall and fluid during pool and flow boiling are described. The paints are excited using ultraviolet (UV) light emitting diodes (LEDs), and changes in fluorescence intensity are used to infer local temperature differences across a thin insulator from which heat flux distribution is obtained. Advantages over infrared (IR) thermometry include the ability to use substrates that are opaque to IR (e.g., glass, plexiglass and plastic films), use of low-cost optical cameras, no self-emission from substrates to complicate data interpretation, high speed, and high spatial resolution. TSP-based methods to measure wall heat transfer distributions are validated and then demonstrated for pool and flow boiling.

References

1.
Theofanous
,
T. G.
, Tu, J. P., Dinh, A. T., and Dinh, T. N.,
2002
, “
The Boiling Crisis Phenomenon Part I: Nucleation and Nucleate Boiling Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
26
(6–7), pp.
775
792
.
2.
Theofanous
,
T. G.
,
Dinh
,
T. N.
,
Tu
,
J. P.
, and
Dinh
,
A. T.
,
2002b
, “
The Boiling Crisis Phenomenon—Part II: Dryout Dynamics and Burnout
,”
Exp. Therm. Fluid Sci.
,
26
(6–7), pp.
793
810
.
3.
Golobic
,
I.
,
Petkovsek
,
J.
,
Baselj
,
M.
,
Papez
,
A.
, and
Kenning
,
D. B. R.
,
2009
, “
Experimental Determination of Transient Wall Temperature Distributions Close to Growing Vapor Bubbles
,”
Heat Mass Transfer
,
45
(
7
), pp.
857
866
.
4.
Schweizer
,
N.
, and
Stephan
,
P.
,
2009
, “
Experimental Study of Bubble Behavior and Local Heat Flux in Pool Boiling Under Variable Gravitational Conditions
,”
Multiphase Sci. Technol.
,
21
(
4
), pp. 329–350.
5.
Fischer
,
S.
,
Herbert
,
S.
,
Sielaff
,
A.
,
Slomski
,
E. M.
,
Stephan
,
P.
, and
Oechsner
,
M.
,
2011
, “
Experimental Investigation of Nucleate Boiling on a Thermal Capacitive Heater Under Variable Gravity Conditions
,”
Microgravity Sci Technol.
,
24
(
3
), pp.
139
146
.
6.
Gerardi
,
C.
,
Buongiorno
,
J.
,
Hu
,
L. W.
, and
McKrell
,
T.
,
2010
, “
Study of Bubble Growth in Water Pool Boiling Through Synchronized, Infrared Thermometry and High-Speed Video
,”
Int. J. Heat Mass Transfer
,
53
(
19
), pp.
4185
4192
.
7.
Krebs
,
D.
,
Narayanan
,
V.
,
Liburdy
,
J.
, and
Pence
,
D.
,
2010
, “
Spatially Resolved Wall Temperature Measurements During Flow Boiling in Microchannels
,”
Exp. Therm. Fluid Sci.
,
34
(
4
), pp.
434
445
.
8.
Shen
,
J.
,
Graber
,
C.
,
Liburdy
,
J.
,
Pence
,
D.
, and
Narayanan
,
V.
,
2010
, “
Simultaneous Droplet Impingement Dynamics and Heat Transfer on Nano-Structured Surfaces
,”
Exp. Therm. Fluid Sci.
,
34
(
4
), pp.
496
503
.
9.
Mani
,
P.
,
Cardenas
,
R.
, and
Narayanan
,
V.
,
2011
, “Submerged Jet Impingement Boiling on a Polished Silicon Surface,”
ASME
Paper No. IPACK2011-52042.
10.
Sefiane
,
K.
,
Moffat
,
J. R.
,
Matar
,
O. K.
, and
Craster
,
R. V.
,
2008
, “
Self-Excited Hydrothermal Waves in Evaporating Sessile Drops
,”
Appl. Phys. Lett.
,
93
(
7
), p.
074103
.
11.
Solotych
,
V.
,
Kim
,
J.
, and
Dessiatoun
,
S.
,
2014
, “
Local Heat Transfer Measurements Within a Representative Plate Heat Exchanger Geometry Using Infrared (IR) Thermography
,”
J. Enhanced Heat Transfer
,
21
(
4–5
), pp.
353
372
.
12.
Solotych
,
V.
,
Lee
,
D.
,
Kim
,
J.
,
Amalfi
,
R. L.
, and
Thome
,
J.
,
2016
, “
Boiling Heat Transfer and Two-Phase Pressure Drops Within Compact Plate Heat Exchangers: Experiments and Flow Visualizations
,”
Int. J. Heat Mass Transfer
,
94
, pp.
239
253
.
13.
Jung
,
S.
, and
Kim
,
H.
,
2015
, “
An Experimental Study on Heat Transfer Mechanisms in the Microlayer Using Integrated Total Reflection, Laser Interferometry and Infrared Thermometry Technique
,”
Heat Transfer Eng.
,
36
(12), pp. 1002–1012.
14.
Kim
,
T. H.
,
Kommer
,
E.
,
Dessiatoun
,
S.
, and
Kim
,
J.
,
2012
, “
Measurement of Two-Phase Flow and Heat Transfer Parameters Using Infrared Thermometry
,”
Int. J. Multiphase Flow
,
40
, pp.
56
67
.
15.
Scammell
,
A.
, and
Kim
,
J.
,
2015
, “
Heat Transfer and Flow Characteristics of Rising Taylor Bubbles
,”
Int. J. Heat Mass Transfer
,
89
, pp.
379
389
.
16.
Scammell
,
A.
,
Kim
,
J.
,
Magnini
,
M.
, and
Thome
,
J.
,
2016
, “
A Study of Gravitational Effects on Single Elongated Vapor Bubbles
,”
Int. J. Heat Mass Transfer
,
99
, pp.
904
917
.
17.
Antonelli
,
G. A.
,
Perrin
,
B.
,
Daly
,
B. C.
, and
Cahill
,
D. G.
,
2006
, “
Characterization of Mechanical and Thermal Properties Using Ultrafast Optical Metrology
,”
MRS Bull.
,
31
(
8
), pp.
607
613
.
18.
Kenning
,
D. B. R.
,
Kono
,
T.
, and
Wienecke
,
M.
,
2001
, “
Investigation of Boiling Heat Transfer by Liquid Crystal Thermography
,”
Exp. Therm. Fluid Sci.
,
25
(5), pp.
219
229
.
19.
Bayazit
,
B. B.
,
Hollingsworth
,
D. K.
, and
Witte
,
L. C.
,
2003
, “
Heat Transfer Enhancement Caused by Sliding Bubbles
,”
ASME J. Heat Transfer
,
125
(3), pp.
503
509
.
20.
Daniel
,
E.
,
Hollingsworth
,
D. K.
, and
Witte
,
L.
,
2007
, “
Transition From Boiling Onset to Fully-Developed Nucleate Boiling in a Narrow Vertical Channel
,”
Heat Transfer Eng.
,
28
(
10
), pp.
885
894
.
21.
Piasecka
,
M.
,
2013
, “
Determination of the Temperature Field Using Liquid Crystal Thermography and Analysis of Two-Phase Flow Structures in Research on Boiling Heat Transfer in a Minichannel
,”
Metrology Meas. Syst.
,
20
(
2
), pp.
205
216
.
22.
Liu
,
T.
, and
Sullivan
,
J. P.
,
2005
,
Pressure and Temperature Sensitive Paints
,
Springer, Berlin
.
23.
Wang
,
X.
,
Wolfbeis
,
O. S.
, and
Meier
,
R.
,
2013
, “
Luminescent Probes and Sensors for Temperature
,”
Chem. Soc. Rev.
,
42
(19), pp.
7834
7869
.
24.
Kurits
,
I.
,
2008
, “Quantitative Global Heat-Transfer Measurements Using Temperature-Sensitive Paint on a Blunt Body in Hypersonic Flows”,
M.S. thesis
, University of Maryland, College Park, MD.https://drum.lib.umd.edu/handle/1903/8302
25.
Bhandari
,
P.
,
2012
, “Evaluation and Improvement of Temperature Sensitive Paint Data Reduction Process Through Analysis of Tunnel Data,”
M.S. thesis
, University of Maryland, College Park, MD.https://drum.lib.umd.edu/handle/1903/13564
26.
Li
,
S.
,
Zhang
,
K.
,
Yang
,
J. M.
,
Lin
,
L.
, and
Yang
,
H.
,
2007
, “
Single Quantum Dots as Local Temperature Markers
,”
Nano Lett.
,
7
(
10
), pp.
3102
3105
.
27.
Sakaue
,
H.
,
Aikawa
,
A.
,
Iijima
,
Y.
,
Kuriki
,
T.
, and
Miyazaki
,
T.
,
2012
, “
Quantum Dots as Global Temperature Measurements
,”
Quantum Dots-A Variety of New Applications
,
Ameenah
Al-Ahmade
, ed., InTech, Rijeka, Croatia.
28.
Ozawa
,
H.
,
Laurence
,
S. J.
,
Martinez Schramm
,
J.
,
Wagner
,
A.
, and
Hannemann
,
K.
,
2015
, “
Fast-Response Temperature-Sensitive-Paint Measurements on a Hypersonic Transition Cone
,”
Exp. Fluids
,
56
(
2–13
), p.
1853
.
29.
Jorge
,
P. A. S.
,
Mayeh
,
M.
,
Benrashid
,
R.
,
Caldas
,
P.
,
Santos
,
J. L.
, and
Farahi
,
F.
,
2006
, “
Quantum Dots as Self-Reference Optical Fibre Temperature Probes for Luminescent Chemical Sensors
,”
Meas. Sci. Technol.
,
17
(5), pp.
1032
1038
.
30.
Wang
,
H.
,
Yang
,
A.
,
Chen
,
Z.
, and
Geng
,
Y.
,
2014
, “
Reflective Photoluminescence Fiber Temperature Probe Based on the CdSe/ZnS Quantum Dot Thin Film
,”
Opt. Spectrosc.
,
117
(
2
), pp.
235
239
.
31.
Bueno, A., Suarez, I., and Abargues, R., Sales, S., and Martinez Pastor, J.,
2012
, “
Temperature Sensor Based on Colloidal Quantum Dots–PMMA Nanocomposite Waveguides
,”
IEEE Sens. J.
,
12
(
10
), pp.
3069
3074
.
32.
Al Hashimi
,
H.
, and
Kim
,
J.
,
2016
, “
Quantum Dot Temperature Sensor Ab Initio Test: Droplet Vaporization Heat Transfer
,”
ASME
Paper No. HT2016-7164.
33.
Campbell
,
B. T.
,
Liu
,
T.
, and
Sullivan
,
J. P.
,
1994
, “Temperature Sensitive Fluorescent Paint Systems,”
AIAA
Paper No. 94-2483.
34.
Kim
,
M.
, and
Yoda
,
M.
,
2010
, “Fluorescence Thermometry for Measuring Wall Surface and Bulk Fluid Temperatures,”
ASME
Paper No. IHTC14-22884.
35.
Shibuya
,
A.
,
Ueki
,
R.
,
Suzuki
,
Y.
, and
Tange
,
M.
,
2016
, “
Temporal Temperature Distribution Measurement of a Heat Transfer Surface of a Flow Boiling Heat Sink With a Micro-Gap Using Temperature Sensitive Paint
,”
First Pacific Rim Thermal Engineering Conference
, Waikoloa, HI, Mar. 13–16, Paper No. PRTEC-14900.
36.
Mills
,
A.
,
1997
, “
Optical Oxygen Sensors Utilizing the Luminescence of Platinum Metal Complexes
,”
Platinum Met. Rev.
,
41
(
3
), pp.
115
127
.
37.
Huang
,
C.
,
2006
, “Molecular Sensors for MEMS.” Ph.D. thesis, Purdue University, West Lafayette, IN.
38.
Moaveni
,
S.
, and
Kim
,
J.
,
2017
, “
An Inverse Solution for Reconstruction of the Heat Transfer Coefficient From the Knowledge of Two Temperature Values in a Solid Substrate
,”
Inverse Problems Sci. Eng.
,
25
(
1
), pp.
129
153
.
39.
Leinhard
,
J. H.
, and
Dhir
,
V. K.
,
1973
, “Extended Hydrodynamic Theory of the Peak and Minimum Pool Boiling Heat Fluxes,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA-CR-2270
.https://ntrs.nasa.gov/search.jsp?R=19730019076
40.
Zuber
,
N.
,
1959
, “Hydrodynamic Aspects of Boiling Heat Transfer,” United States Atomic Energy Commission, Washington, DC, Report No.
AECU-4439
.https://www.osti.gov/scitech/servlets/purl/4175511/
41.
Kandlikar
,
S. G.
,
2002
, “
Insight Into Mechanisms and Review of Available Models for Critical Heat Flux (CHF) in Pool Boiling
,” First International Conference on Heat Transfer, Fluid Dynamics and Thermodynamics (
HEFAT
), Limpopo and Mpumalanga, South Africa, Apr. 8–10.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.598.3880&rep=rep1&type=pdf
42.
Jung
,
J. H.
,
Kim
,
S. J.
, and
Kim
,
J.
,
2013
, “
Observations of the Critical Heat Flux Process During Pool Boiling of FC-72
,”
ASME J. Heat Transfer
,
136
(4), p.
041501
.
43.
Kim
,
H.
,
2011
, “
Enhancement of Critical Heat Flux in Nucleate Boiling of Nanofluids: A State-of-Art Review
,”
Nanoscale Res. Lett., a Springer Open J.
,
6
, p.
415
.
44.
Kim
,
H.
,
DeWitt
,
G.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, “
On the Quenching of Steel and Zircaloy Spheres in Water-Based Nanofluids With Alumina, Silica and Diamond Nanoparticles
,”
Int. J. Multiphase Flow
,
35
(5), pp.
427
438
.
45.
Unal
,
C.
,
Daw
,
V.
, and
Nelson
,
R. A.
,
1992
, “
Unifying the Controlling Mechanisms for the Critical Heat Flux and Quenching: The Ability of Liquid to Contact the Hot Surface
,”
ASME J. Heat Transfer
,
114
(4), pp.
972
982
.
46.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley, Hoboken, NJ
.
47.
Davis
,
L. P.
, and
Perona
,
J. J.
,
1971
, “
Development of Free Convection Flow of a Gas in a Heated Vertical Open Tube
,”
Int. J. Heat Mass Transfer
,
14
(
7
), pp.
889
903
.
48.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
, Laminar Flow Forced Convection in Ducts (A Sourcebook For Compact Heat Transfer Exchange Analytical Data), Elsevier, Amsterdam, The Netherlands.
49.
Stephan
,
K.
,
1962
, “
Wärmeübergang bei turbulenter und bei laminarer Strömung in Ringspalten
,”
Chem. Ing. Tech.
,
34
(3), pp.
207
212
.
50.
Popiel
,
C. O.
,
2008
, “
Free Convection Heat Transfer From Vertical Slender Cylinders: A Review
,”
Heat Transfer Eng.
,
29
(6), pp.
521
536
.
You do not currently have access to this content.