An incompressible electrically conducting viscous fluid flow influenced by a local external magnetic field may develop vortical structures and eventually instabilities similar to those observed in flows around bluff bodies (such as circular cylinder), denominated magnetic obstacle. The present investigation analyzes numerically the three-dimensional flow and heat transfer around row of magnetic obstacles. The vortex structures of magnetic obstacles, heat transfer behaviors in the wake of magnetic obstacles, and flow resistance are analyzed at different Reynolds numbers. It shows that the flow behind magnetic obstacles contains four different regimes: (1) one pair of magnetic vortices, (2) three pairs namely, magnetic, connecting, and attached vortices, (3) smaller vortex shedding from the in-between magnetic obstacles, i.e., quasi-static, and (4) regular vortex shedding from the row of magnetic obstacles. Furthermore, downstream cross-stream mixing induced by the unstable wakes can enhance wall-heat transfer, and the maximum value of percentage heat transfer increment (HI) is equal to about 35%. In this case, the thermal performance factor is more than one.

References

1.
Jiang
,
H. B.
,
Wang
,
A. K.
, and
Peng
,
X. D.
,
2010
, “
Finite Larmor Radius Magnetohydrodynamic Analysis of the Ballooning Modes in Tokamaks
,”
Chin. Phys. B
,
19
(
11
), p.
115205
.
2.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2008
, “
Plasma-Based Flow-Control Strategies for Transitional Highly Loaded Low-Pressure Turbines
,”
ASME J. Fluids Eng.
,
130
(
4
), p.
041104
.
3.
Moreau
,
R.
,
1990
,
Magnetohydrodynamics
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
, pp.
4
10
.
4.
Davidson
,
P. A.
,
2001
,
An Introduction to Magnetohydrodynamics
,
Cambridge University Press
,
Cambridge, UK
, pp.
117
158
.
5.
Cuevas
,
S.
,
Smolentsev
,
S.
, and
Abdou
,
M. A.
,
2006
, “
Vorticity Generation in Creeping Flow Past a Magnetic Obstacle
,”
Phys. Rev. E
,
74
(
5
), p.
056301
.
6.
Cuevas
,
S.
,
Smolentsev
,
S.
, and
Abdou
,
M. A.
,
2006
, “
On the Flow Past a Magnetic Obstacle
,”
J. Fluid Mech.
,
553
, pp.
227
252
.
7.
Votyakov
,
E. V.
,
Kolesnikov
,
Y.
,
Andreev
,
O.
,
Zienicke
,
E.
, and
Thess
,
A.
,
2007
, “
Structure of the Wake of a Magnetic Obstacle
,”
Phys. Rev. Lett.
,
98
(
14
), p.
144504
.
8.
Andreev
,
O.
,
Kolesnikov
,
Y.
, and
Thess
,
A.
,
2007
, “
Experimental Study of Liquid Metal Channel Flow Under the Influence of a Non-Uniform Magnetic Field
,”
Phys. Fluids
,
19
(
3
), p.
039902
.
9.
Votyakov
,
E. V.
,
Zienicke
,
E.
, and
Kolesnikov
,
Y. B.
,
2008
, “
Constrained Flow Around a Magnetic Obstacle
,”
J. Fluid Mech.
,
610
, pp.
131
156
.
10.
Votyakov
,
E. V.
, and
Kassinos
,
S. C.
,
2009
, “
On the Analogy Between Streamlined Magnetic and Solid Obstacles
,”
Phys. Fluids
,
21
(
9
), p.
097102
.
11.
Kenjereš
,
S.
,
Cate
,
S. T.
, and
Voesenek
,
C. J.
,
2011
, “
Vortical Structures and Turbulent Bursts Behind Magnetic Obstacles in Transitional Flow Regimes
,”
Int. J. Heat Fluid Flow
,
32
(
3
), pp.
510
528
.
12.
Zhang
,
X. D.
, and
Huang
,
H. L.
,
2013
, “
Effect of Local Magnetic Fields on Electrically Conducting Fluid Flow and Heat Transfer
,”
ASME J. Heat Transfer
,
135
(
2
), p.
021702
.
13.
Zhang
,
X. D.
, and
Huang
,
H. L.
,
2013
, “
Blockage Effects on Viscous Fluid Flow and Heat Transfer Past a Magnetic Obstacle in a Duct
,”
Chin. Phys. B
,
22
(
7
), p.
075202
.
14.
Zhang
,
X. D.
, and
Huang
,
H. L.
,
2014
, “
Effect of Magnetic Obstacle on Fluid Flow and Heat Transfer in a Rectangular Duct
,”
Int. Commun. Heat Mass Transfer
,
51
, pp.
31
38
.
15.
Zhang
,
X. D.
,
Huang
,
H. L.
,
Zhang
,
Y.
, and
Wang
,
H. Y.
,
2016
, “
Influence of a Magnetic Obstacle on Forced Convection in a Three-Dimensional Duct With a Circular Cylinder
,”
ASME J. Heat Transfer
,
138
(
1
), p.
011703
.
16.
Kenjereš
,
S.
,
2012
, “
Energy Spectra and Turbulence Generation in the Wake of Magnetic Obstacles
,”
Phys. Fluids
,
24
(
11
), p.
115111
.
17.
Zhang
,
X. D.
,
Huang
,
H. L.
, and
Wang
,
H. Y.
,
2014
, “
Flow and Heat Transfer Past Row of Magnetic Obstacles for Various Separation Ratios
,”
Int. Commun. Heat Mass Transfer
,
59
, pp.
178
187
.
18.
Zhang
,
X. D.
, and
Huang
,
H. L.
,
2015
, “
Heat Transfer Enhancement of MHD Flow by a Row of Magnetic Obstacles
,”
Heat Transfer Res.
,
46
(
12
), pp.
1101
1121
.
19.
Kumar
,
S. R.
,
Sharma
,
A.
, and
Agrawal
,
A.
,
2008
, “
Simulation of Flow Around a Row of Square Cylinders
,”
J. Fluid Mech.
,
606
, pp.
369
397
.
20.
Chatterjee
,
D.
,
Biswas
,
G.
, and
Amiroudine
,
S.
,
2009
, “
Numerical Investigation of Forced Convection Heat Transfer in Unsteady Flow Past a Row of Square Cylinders
,”
Int. J. Heat Fluid Flow
,
30
(
6
), pp.
1114
1128
.
21.
Chatterjee
,
D.
,
Biswas
,
G.
, and
Amiroudine
,
S.
,
2010
, “
Numerical Simulation of Flow Past Row of Square Cylinders for Various Separation Ratios
,”
Comput. Fluids
,
39
(
1
), pp.
49
59
.
22.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretized Fluid Flow Equations by Operator Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.
23.
Ni
,
M. J.
,
Munipalli
,
R.
, and
Morley
,
N. B.
,
2007
, “
A Current Density Conservative Scheme for Incompressible MHD Flows at a Low Magnetic Reynolds Number—Part I: On a Rectangular Collocated Grid System
,”
J. Comput. Phys.
,
227
(
1
), pp.
174
204
.
24.
Samsami
,
F.
,
Kolesnikov
,
Y.
, and
Thess
,
A.
,
2014
, “
Vortex Dynamics in the Wake of a Magnetic Obstacle
,”
J. Visualization
,
17
(
3
), pp.
245
252
.
You do not currently have access to this content.