The ultrasonic effect on the heat transfer performance in oscillating heat pipes (OHPs) was investigated experimentally. Ultrasonic sound was applied to the evaporating section of the OHP by using electrically controlled piezoelectric ceramics. The heat pipes were tested with or without the ultrasonic effect. The effects of heat input, filling ratio, orientation, operating temperature, and working fluids (water and acetone) were investigated. The experimental results showed that ultrasonic sound can affect the oscillating motions and enhance the heat transfer performance of an OHP. However, the heat transfer enhancement mainly occurs at low heat input. In addition, it was found that heat transfer enhancement of the ultrasonic effect depends on the working fluid and operating temperature. At an operating temperature of 20 °C, the enhancement percentage of the water OHP is higher than acetone OHP. However, when the operating temperature was increased to 40 °C, the enhancement percentage of the water OHP was lower than the acetone OHP.

References

1.
Akachi
,
H.
,
1990
, “
Structure of a Heat Pipe
,” U.S. Patent #4,921,041.
2.
Wilson
,
C.
,
Borgmeyer
,
B.
,
Winholtz
,
R. A.
,
Ma
,
H. B.
,
Jacobson
,
D.
, and
Hussey
,
D.
,
2011
, “
Thermal and Visual Observation of Water and Acetone Oscillating Heat Pipes
,”
ASME J. Heat Transfer
,
133
(
6
), p.
061502
.10.1115/1.4003546
3.
Ma
,
H. B.
,
Wilson
,
C.
,
Yu
,
Q.
,
Park
,
K.
,
Choi
,
U. S.
, and
Tirumala
,
M.
,
2006
, “
An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
128
(
11
), pp.
1213
1216
.10.1115/1.2352789
4.
Zhao
,
N.
,
Zhao
,
D.
, and
Ma
,
H. B.
,
2013
, “
Experimental Investigation of Magnetic Field Effect on the Magnetic Nanofluid Oscillating Heat Pipe
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
1
), p.
011005
.10.1115/1.4007498
5.
Qu
,
W.
, and
Ma
,
H. B.
,
2007
, “
Theoretical Analysis of Start-Up of a Pulsating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
50
(
11–12
), pp.
2309
2316
.10.1016/j.ijheatmasstransfer.2006.10.043
6.
Zhao
,
N.
,
Ma
,
H. B.
, and
Pan
,
X.
,
2011
, “
Wavelet Analysis of Oscillating Motions in an Oscillating Heat Pipe
,”
ASME
Paper No. IMECE2011-63632. 10.1115/IMECE2011-63632
7.
Tong
,
B. Y.
,
Wong
,
T. N.
, and
Ooi
,
K. T.
,
2001
, “
Closed-Loop Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
21
(
18
), pp.
1845
1862
.10.1016/S1359-4311(01)00063-1
8.
Khandekar
,
S.
,
Charoensawan
,
P.
,
Groll
,
M.
, and
Terdtoon
,
P.
,
2003
, “
Closed Loop Pulsating Heat Pipes Part B: Visualization and Semi-Empirical Modeling
,”
Appl. Therm. Eng.
,
23
(
16
), pp.
2021
2033
.10.1016/S1359-4311(03)00168-6
9.
Lin
,
Z.
,
Wang
,
S.
,
Huo
,
J.
,
Hu
,
Y.
,
Chen
,
J.
,
Zhang
,
W.
, and
Lee
,
E.
,
2011
, “
Heat Transfer Characteristics and LED Heat Sink Application of Aluminum Plate Oscillating Heat Pipes
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2221
2229
.10.1016/j.applthermaleng.2011.03.003
10.
Borgmeyer
,
B.
, and
Ma
,
H. B.
,
2007
, “
Experimental Investigation of Oscillating Motions in a Flat Plate Pulsating Heat Pipe
,”
J. Thermophys. Heat Transfer
,
21
(
2
), pp.
405
409
.10.2514/1.23263
11.
Fumoto
,
K.
,
Kawaji
,
M.
, and
Kawanami
,
T.
,
2010
, “
Study on a Pulsating Heat Pipe With Self-Rewetting Fluid
,”
ASME J. Electron. Packag.
,
132
(
3
), p.
031005
.10.1115/1.4001855
12.
Song
,
Y.
, and
Xu
,
J.
,
2009
, “
Chaotic Behavior of Pulsating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
2932
2941
.10.1016/j.ijheatmasstransfer.2009.02.030
13.
Xian
,
H.
,
Yang
,
Y.
,
Liu
,
D.
, and
Du
,
X.
,
2010
, “
Heat Transfer Characteristics of Oscillating Heat Pipe With Water and Ethanol as Working Fluids
,”
ASME J. Heat Transfer
,
132
(
12
), p.
121501
.10.1115/1.4002366
14.
Khandekar
,
S.
,
Dollinger
,
N.
, and
Groll
,
M.
,
2003
, “
Understanding Operational Regimes of Closed Loop Pulsating Heat Pipes: An Experimental Study
,”
Appl. Therm. Eng.
,
23
(
6
), pp.
707
719
.10.1016/S1359-4311(02)00237-5
15.
Thompson
,
S. M.
,
Ma
,
H. B.
,
Winholtz
,
R. A.
, and
Wilson
,
C.
,
2009
, “
Experimental Investigation of Miniature Three-Dimensional Flat-Plate Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
131
(
4
), p.
043210
.10.1115/1.3072953
16.
Thompson
,
S. M.
,
Cheng
,
P.
, and
Ma
,
H. B.
,
2011
, “
An Experimental Investigation of a Three-Dimensional Flat-Plate Oscillating Heat Pipe With Staggered Microchannels
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
3951
3959
.10.1016/j.ijheatmasstransfer.2011.04.030
17.
Thompson
,
S. M.
,
Hathaway
,
A. A.
,
Smoot
,
C. D.
,
Wilson
,
C. A.
,
Ma
,
H. B.
,
Young
,
R. M.
,
Greenberg
,
L.
,
Osick
,
B. R.
,
Van Campen
,
S.
,
Morgan
,
B. C.
,
Sharar
,
D.
, and
Jankowski
,
N.
,
2011
, “
Robust Thermal Performance of a Flat-Plate Oscillating Heat Pipe During High-Gravity Loading
,”
ASME J. Heat Transfer
,
133
(
10
), p.
104504
.10.1115/1.4004076
18.
Charoensawan
,
P.
, and
Terdtoon
,
P.
,
2008
, “
Thermal Performance of Horizontal Closed-Loop Oscillating Heat Pipes
,”
Appl. Therm. Eng.
,
28
(
5–6
), pp.
460
466
.10.1016/j.applthermaleng.2007.05.007
19.
Ji
,
Y.
,
Chen
,
H.
,
Kim
,
Y.
,
Yu
,
Q.
,
Ma
,
X.
, and
Ma
,
H. B.
,
2012
, “
Hydrophobic Surface Effect on Heat Transfer Performance in an Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
134
(
7
), p.
074502
.10.1115/1.4006111
20.
Lin
,
Z.
,
Wang
,
S.
,
Chen
,
J.
,
Huo
,
J.
,
Hua
,
Y.
, and
Zhang
,
W.
,
2011
, “
Experimental Study on Effective Range of Miniature Oscillating Heat Pipes
,”
Appl. Therm. Eng.
,
31
(
5
), pp.
880
886
.10.1016/j.applthermaleng.2010.11.009
21.
Chien
,
K. H.
,
Lin
,
Y. T.
,
Chen
,
Y. R.
,
Yang
,
K. S.
, and
Wang
,
C. C.
,
2012
, “
A Novel Design of Pulsating Heat Pipe With Fewer Turns Applicable to All Orientations
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5722
5728
.10.1016/j.ijheatmasstransfer.2012.05.068
22.
Arabnejad
,
S.
,
Rasoulian
,
R.
,
Shafii
,
M. B.
, and
Saboohia
,
Y.
,
2010
, “
Numerical Investigation of the Performance of a U-Shaped Pulsating Heat Pipe
,”
Heat Transfer Eng.
,
31
(
14
), pp.
1155
1164
.10.1080/01457631003689278
23.
Ma
,
H. B.
,
Borgmeyer
,
B.
,
Cheng
,
P.
, and
Zhang
,
Y.
,
2008
, “
Heat Transport Capability in an Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
130
(
8
), p.
081501
.10.1115/1.2909081
24.
Zhao
,
N.
,
Zhao
,
D.
, and
Ma
,
H. B.
,
2013
, “
Ultrasonic Effect on the Startup of an Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
135
(
7
), p.
074503
.10.1115/1.4023884
25.
Legay
,
M.
,
Gondrexon
,
N.
,
Person
,
S. L.
,
Boldo
,
P.
, and
Bontemps
,
A.
,
2011
, “
Enhancement of Heat Transfer by Ultrasound: Review and Recent Advances
,”
Int. J. Chem. Eng.
,
2011
, p.
670108
.10.1155/2011/670108
26.
Laborde
,
J. L.
,
Hita
,
A.
,
Caltagirone
,
J. P.
, and
Gerard
,
A.
,
2000
, “
Fluid Dynamics Phenomena Induced by Power Ultrasounds
,”
Ultrasonics
,
38
(
1
), pp.
297
300
.10.1016/S0041-624X(99)00124-9
27.
Neppiras
,
E. A.
,
1984
, “
Acoustic Cavitation Series: Part One. Acoustic Cavitation: An Introduction
,”
Ultrasonics
,
22
(
1
), pp.
25
28
.10.1016/0041-624X(84)90057-X
28.
Bartoli
,
C.
, and
Baffigi
,
F.
,
2011
, “
Effects of Ultrasonic Waves on the Heat Transfer Enhancement in Subcooled Boiling
,”
Exp. Therm. Fluid Sci.
,
35
(
3
), pp.
423
432
.10.1016/j.expthermflusci.2010.11.002
29.
Kim
,
H. Y.
,
Kim
,
Y. G.
, and
Kang
,
B. H.
,
2004
, “
Enhancement of Natural Convection and Pool Boiling Heat Transfer Via Ultrasonic Vibration
,”
Int. J. Heat Mass Transfer
,
47
(
12–13
), pp.
2831
2840
.10.1016/j.ijheatmasstransfer.2003.11.033
30.
Zhou
,
D. W.
,
Liu
,
D. Y.
,
Hu
,
X. G.
, and
Ma
,
C. F.
,
2002
, “
Effect of Acoustic Cavitation on Boiling Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
26
(
8
), pp.
931
938
.10.1016/S0894-1777(02)00201-7
31.
Zhou
,
D.
, and
Liu
,
D.
,
2002
, “
Boiling Heat Transfer in an Acoustic Cavitation Field
,”
Chin. J. Chemi. Eng.
,
10
(
5
), pp.
625
629
.
You do not currently have access to this content.