In this paper, numerical simulation approaches for multiscale process of heat transfer and fluid flow are briefly reviewed, and the existing coupling algorithms are summarized. These molecular dynamics simulation (MDS)–finite volume method (FVM), MD–lattice Boltzmann method (LBM), and direct simulation of Monte Carlo method (DSMC)–FVM. The available reconstruction operators for LBM–FVM coupling are introduced. Four multiscale examples for fluid flow and heat transfer are presented by using these coupled methods. It is shown that by coupled method different resolution requirements in the computational domain can be satisfied successfully while computational time can be significantly saved. Further research needs for the study of multiscale heat transfer and fluid flow problems are proposed.

References

1.
He
,
Y. L.
, and
Tao
,
W. Q.
,
2012
, “
Multiscale Simulations of Heat Transfer and Fluid Flow Problems
,”
ASME J. Heat Transfer
,
134
(
3
), p.
031018
.10.1115/1.4005154
2.
Bernardi
,
D. M.
,
1990
, “
Water-Balance Calculations for Solid Polymer–Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
,
137
(
8
), pp.
3344
3350
.10.1149/1.2086220
3.
Lum
,
K. W.
, and
McGuirk
,
J. J.
,
2005
, “
Three-Dimensional Model of a Complete Polymer Electrolyte Membrane Fuel Cell—Model Formulation, Validation and Parametric Studies
,”
J. Power Sources
,
143
(
1–2
), pp.
103
124
.10.1016/j.jpowsour.2004.11.032
4.
Mazumder
,
S.
, and
Cole
,
J. V.
,
2003
, “
Rigorous 3-D Mathematical Modeling of PEM Fuel Cells. I. Model Predictions Without Liquid Water Transport
,”
J. Electrochim. Soc.
,
150
(
11
), pp.
A1503
A1509
.10.1149/1.1615608
5.
Um
,
S.
, and
Wang
,
C. Y.
,
2004
, “
Three-Dimensional Analysis of Transport and Electrochemical Reactions in Polymer Electrolyte Fuel Cells
,”
J. Power Sources
,
125
(
1
), pp.
40
51
.10.1016/j.jpowsour.2003.07.007
6.
Berning
,
T.
,
Lu
,
D. M.
, and
Djilali
,
N.
,
2002
, “
Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell
,”
J. Power Source
,
106
(
1–2
), pp.
284
294
.10.1016/S0378-7753(01)01057-6
7.
Senn
,
S. M.
, and
Poulikakos
,
D.
,
2004
, “
Polymer Electrolyte Fuel Cells With Porous Materials Fluid Distributors and Comparisons With Traditional Channeled Systems
,”
ASME J. Heat Transfer
,
126
(
6
), pp.
410
418
.10.1115/1.1738424
8.
Hu
,
G.
,
Fan
,
J.
,
Chen
,
S.
,
Liu
,
Y.
, and
Cen
,
K.
,
2004
, “
Three-Dimensional Numerical Analysis of Proton Exchange Membrane Fuel Cells (PEMFCs) With Conventional and Interdigitated Flow Fields
,”
J. Power Sources
,
136
(
1
), pp.
1
9
.10.1016/j.jpowsour.2004.05.010
9.
Hu
,
M.
,
Gu
,
A.
,
Wang
,
M.
,
Zhu
,
X.
, and
Yu
,
L.
,
2004
, “
Three Dimensional, Two Phase Mathematical Model for PEM Fuel Cell. Part I. Model Development
,”
Energy Convers. Manage.
,
45
(
11–12
), pp.
1861
1882
.10.1016/j.enconman.2003.09.022
10.
Tao
,
W. Q.
,
Min
,
C. H.
,
Liu
,
X. L.
,
He
,
Y. L.
,
Yin
,
B. H.
, and
Jiang
,
W.
,
2006
, “
Parameter Sensitivity Examination and Discussion of PEM Fuel Cell Simulation Model Validation: Part I. Current Status of Modeling Research and Model Development
,”
J. Power Source
,
160
(
1
), pp.
359
373
.10.1016/j.jpowsour.2006.01.078
11.
Min
,
C. H.
,
He
,
Y. L.
,
Liu
,
X. L.
,
Yin
,
B. H.
,
Jiang
,
W.
, and
Tao
,
W. Q.
,
2006
, “
Parameter Sensitivity Examination and Discussion of PEM Fuel Cell Simulation Model Validation. Part II: Results of Sensitivity Analysis and Validation of the Model
,”
J. Power Source
,
160
(
1
), pp.
374
385
.10.1016/j.jpowsour.2006.01.080
12.
Tao
,
W. Q.
, and
He
,
Y. L.
,
2009
, “
Recent Advances in Multiscale Simulation of Heat Transfer and Fluid Flow Problems
,”
Prog. Comput. Fluid Dyn.
,
9
(
3/4/5
), pp.
151
157
.10.1504/PCFD.2009.024813
13.
Nie
,
Q.
, and
Joshi
,
Y.
,
2008
, “
Multiscale Thermal Modeling Methodology for Thermoelectrically Cooled Electronic Cabinets
,”
Numer. Heat Transfer, Part A
,
53
(
3
), pp.
225
248
.10.1080/10407780701564101
14.
Wei
,
C.
,
Liu
,
Z.-J.
,
Li
,
Z.-Y.
,
Qu
,
Z.-G.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2014
, “
Numerical Study on Some Improvements in Passive Cooling System of a Radio Base Station by Multiscale Thermal Modeling Methodology—Part I: Confirmation of Simplified Models
,”
Numer. Heat Transfer, Part A
,
65
(
9
), pp.
844
862
.10.1080/10407782.2013.826082
15.
Wei
,
C.
,
Liu
,
Z.-J.
,
Li
,
Z.-Y.
,
Qu
,
Z.-G.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2014
, “
Numerical Study on Some Improvements in Passive Cooling System of a Radio Base Station Base on Multiscale Thermal Modeling Methodology—Part II—Results of Multiscale Numerical Simulation and Subsequent Improvements of Cooling Techniques
,”
Numer. Heat Transfer, Part A
,
65
(
9
), pp.
863
884
.10.1080/10407782.2013.826038
16.
Becker
,
J.
,
Wieser
,
C.
,
Fell
,
S.
, and
Steiner
,
K.
,
2011
, “
A Multi-Scale Approach to Material Modeling of Fuel Cell Diffusion Media
,”
Int. J. Heat Mass Transfer
,
54
(
7–8
), pp.
1360
1368
.10.1016/j.ijheatmasstransfer.2010.12.003
17.
Franco
,
A. A.
,
Coulona
,
R.
,
de Moraisa
,
R. F.
,
Cheaha
,
S.-K.
,
Kachmara
,
A.
, and
Gabriela
,
M. A.
,
2009
, “
Multiscale Modeling Prediction of PEMFC MEA Durability Under Automotive-Operating Conditions
,”
ECS Trans.
,
25
(
1
), pp.
65
79
.10.1149/1.3210560
18.
de Moraisa
,
R. F.
,
Sautetb
,
P.
,
Loffredab
,
D.
, and
Francoa
,
A. A.
,
2011
, “
A Multiscale Theoretical Methodology for the Calculation of Electrochemical Observables From Ab Initio Data: Application to the Oxygen Reduction Reaction in a Pt(1 1 1)-Based Polymer Electrolyte Membrane Fuel Cell
,”
Electrochim. Acta
,
56
(
28
), pp.
10842
10856
.10.1016/j.electacta.2011.05.109
19.
O'Connel
,
S. T.
, and
Thompson
,
P. A.
,
1995
, “
Molecular Dynamics–Continuum Hybrid Computations: A Tool for Studying Complex Fluid Flows
,”
Phys. Rev. E
,
52
(
6
),
R5792
R5795
.10.1103/PhysRevE.52.R5792
20.
Xu
,
H.
,
Luan
,
H.
,
He
,
Y. L.
, and
Tao
,
W.-Q.
,
2012
, “
A Lifting Relation From Macroscopic Variables to Mesoscopic Variables in Lattice Boltzmann Method: Derivation, Numerical Assessments and Coupling Computations Validation
,”
Comput. Fluids
,
54
(1), pp.
92
104
.10.1016/j.compfluid.2011.10.007
21.
Luan
,
H.
,
Xu
,
H.
,
Chen
,
L.
, and
Tao
,
W.-Q.
,
2010
, “
Coupling Between FVM and LBM for Heat Transfer and Fluid Flow
,”
Chin. Sci. Bull.
,
55
(
32
), pp.
3128
3140
(in Chinese).10.1360/972010-583
22.
Chen
,
L.
,
Luan
,
H.
,
Feng
,
Y.
,
He
,
Y. L.
, and
Tao
,
W.-Q.
,
2012
, “
Coupling Between Finite Volume Method and Lattice Boltzmann Method and Its Application to Fluid Flow and Mass Transport in Proton Exchange Membrane Fuel Cell
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3834
3848
.10.1016/j.ijheatmasstransfer.2012.02.020
23.
Chen
,
L.
,
He
,
Y.-L.
,
Kang
,
Q.
, and
Tao
,
W.-Q.
,
2013
, “
Coupled Numerical Approach Combining Finite Volume and Lattice Boltzmann Methods for Multiscale Multi-Physicochemical Processes
,”
J. Comput. Phys.
,
255
(1), pp.
83
105
.10.1016/j.jcp.2013.07.034
24.
Liu
,
J.
,
Chen
,
S. Y.
,
Nie
,
X. B.
, and
Robbins
,
M. O.
,
2007
, “
A Continuum–Atomistic Simulation of Heat Transfer in Micro- and Nano-Flows
,”
J. Comput. Phys.
,
227
(
1
), pp.
279
291
.10.1016/j.jcp.2007.07.014
25.
Sun
,
J.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2009
, “
Molecular Dynamics–Continuum Hybrid Simulation for Condensation of Gas Flow in a Microchannel
,”
Microfluid. Nanofluid.
,
7
(
3
), pp.
407
422
.10.1007/s10404-008-0394-1
26.
Yi
,
P.
,
Poulikakos
,
D.
,
Walther
,
J.
, and
Yadigaroglu
,
G.
,
2002
, “
Molecular Dynamics Simulation of Vaporization of an Ultra-Thin Liquid Argon Layer on a Surface
,”
Int. J. Heat Mass Transfer
,
45
(
10
), pp.
2087
2100
.10.1016/S0017-9310(01)00310-6
27.
Zhou
,
W. J.
,
Luan
,
H. B.
,
He
,
Y. L.
,
Sun
,
J.
, and
Tao
,
W. Q.
,
2014
, “
A Study on Boundary Force Model Used in Multiscale Simulations With Non-Periodic Boundary Condition
,”
Microfluid. Nanofluid.
,
16
(
3
), pp.
587
595
.10.1007/s10404-013-1251-4
28.
Sun
,
Z.
,
Li
,
Z.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2009
, “
Coupled Solid (FVM)–Fluid (DSMC) Simulation of Micro-Nozzle With Unstructured-Grid
,”
Microfluid. Nanofluid.
,
7
(
5
), pp.
621
631
.10.1007/s10404-009-0418-5
29.
Luan
,
H.-B.
,
Xu
,
H.
,
Chen
,
L.
,
Sun
,
D.-L.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2011
, “
Evaluation of the Coupling Scheme of FVM and LBM for Fluid Flows Around Complex Geometries
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
1975
1985
.10.1016/j.ijheatmasstransfer.2011.01.004
30.
Zhou
,
W. J.
,
Luan
,
H. B.
,
Sun
,
J.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2012
, “
A Molecular Dynamics and Lattice Boltzmann Multiscale Simulation for Dense Fluid Flows
,”
Numer. Heat Transfer, Part B
,
61
(
5
), pp.
369
386
.10.1080/10407782.2014.986403
31.
Werder
,
T.
,
Walther
,
J. H.
, and
Koumoutsakos
,
P.
,
2005
, “
Hybrid Atomistic–Continuum Method for the Simulation of Dense Fluid Flows
,”
J. Comput. Phys.
,
205
(
1
), pp.
373
390
.10.1016/j.jcp.2004.11.019
32.
Dupuis
,
A.
,
Kotsalis
,
E. M.
, and
Koumoutsakos
,
P.
,
2007
, “
Coupling Lattice Boltzmann and Molecular Dynamics Models for Dense Fluids
,”
Phys. Rev. E
,
75
(
4
), p.
046704
.10.1103/PhysRevE.75.046704
33.
Sun
,
J.
,
He
,
Y.-L.
,
Tao
,
W.-Q.
,
Yin
,
X.
, and
Wang
,
H. S.
,
2012
, “
Roughness Effect on Flow and Thermal Boundaries in Microchannel/Nanochannel Flow Using Molecular Dynamics–Continuum Hybrid Simulation
,”
Int. J. Numer. Methods Eng.
,
89
(
1
), pp.
2
19
.10.1002/nme.3229
34.
Abraham
,
F. F.
,
2000
, “
Dynamically Spanning the Length Scales From the Quantum to the Continuum
,”
Int. J. Mod. Phys. C
,
11
(
6
), pp.
1135
1148
.10.1142/S0129183100001000
35.
Ganzenmuller
,
G. C.
,
Hiermaier
,
S.
, and
Steinhauser
,
M. O.
,
2012
, “
Consistent Temperature Coupling With Thermal Fluctuation of Smooth Particle Hydrodynamics and Molecular Dynamics
,”
Plos ONE
,
7
(12), p.
e51989
.10.1371/journal.pone.0051989
36.
Liu
,
B. O.
,
Liu
,
J.
,
Lu
,
W. Q.
, and
Ni
,
M. J.
,
2012
, “
Simulation of Liquid Argon Flow in Micro-Channel by an SPH–MD Coupling Method
,”
J. Eng. Phys.
,
33
(
6
), pp.
993
996
(in Chinese).
37.
Xiao
,
Y.
,
Yuan
,
J.
, and
Sunden
,
B.
,
2012
, “
Modeling of Micro/Meso-Scale Reactive Transport Phenomena in Catalyst Layers of Proton Exchange Membrane Fuel Cells
,”
Int. J. Low Carbon Technol.
,
7
(
4
), pp.
280
287
.10.1093/ijlct/cts046
You do not currently have access to this content.