Recuperator is one of the key components in high temperature gas cooled reactors. Although cross-corrugated plates have been used to increase the thermal performance of the recuperators, the fundamental mechanisms of fluid flow and heat transfer are generally not clear. Fluid dynamics simulations and experiments are hence carried out to study the performance of the recuperators. A periodic cell is employed as the control volume. The flow field and heat transfer in sine-wave crossed-corrugated channels are investigated based on the Navier–Stokes and energy equations in the laminar flow regime between Re = 84 and 1168. The numerical results of the heat transfer factors and friction factors in different operating conditions show a fairly good agreement with the experimental measurements. The influence factors on the heat transfer and the hydraulic performance are also discussed in the paper. It is found that the heat transfer factor j and friction factor f decrease with the increase of the pitch-height ratio for a given Reynolds number.

References

1.
McDonald
,
C. F.
, and
Wilson
,
D. G.
,
1996
, “
The Utilisation of Recuperated and Regenerated Engine Cycles for High Efficiency Gas Turbines in the 21st Century
,”
Appl. Therm. Eng.
,
16
, pp.
635
653
.10.1016/1359-4311(95)00078-X
2.
Aquaro
,
D.
, and
Pieve
,
M.
,
2007
, “
High Temperature Heat Exchangers for Power Plants: Performance of Advanced Metallic Recuperators
,”
Appl. Therm. Eng.
,
27
, pp.
389
400
.10.1016/j.applthermaleng.2006.07.030
3.
Min
,
J. K.
,
Jeong
,
J. H.
,
Ha
,
M. Y.
, and
Kim
,
K. S.
,
2009
, “
High Temperature Heat Exchanger Studies for Applications to Gas Turbines
,”
Heat Mass Transfer
,
46
, pp.
175
186
.10.1007/s00231-009-0560-3
4.
Sunden
,
B.
, and
Trollheden
,
S.
,
1989
, “
Periodic Laminar Flow and Heat Transfer in a Corrugated Two-Dimensional Channel
,”
Int. Commun. Heat Mass Transfer
,
16
, pp.
215
225
.10.1016/0735-1933(89)90023-7
5.
Sawyers
,
D.
,
Sen
,
M.
, and
Chang
,
H. C.
,
1998
, “
Heat Transfer Enhancement in Three Dimensional Corrugated Channel Flow
,”
Int. J. Heat Mass Transfer
,
41
, pp.
3559
3573
.10.1016/S0017-9310(98)00029-5
6.
Fabbri
,
G.
,
2000
, “
Heat Transfer Optimization in Corrugated Wall Channels
,”
Int. J. Heat Mass Transfer
,
43
, pp.
4299
4310
.10.1016/S0017-9310(00)00054-5
7.
Mehrabian
,
M. A.
, and
Poulter
,
R.
,
2000
, “
Hydrodynamics and Thermal Characteristics of Corrugated Channels: Computational Approach
,”
Appl. Math. Model.
24
, pp.
343
364
.10.1016/S0307-904X(99)00039-6
8.
Hamza
,
A.
,
Ali
,
H.
, and
Hanaoka
,
Y.
,
2002
, “
Experimental Study on Laminar Flow Forced-Convection in a Channel With Upper V-Corrugated Plate Heated by Radiation
,”
Int. J. Heat Mass Transfer
,
45
, pp.
2107
2117
.10.1016/S0017-9310(01)00309-X
9.
Zhang
,
L. Z.
,
2005
, “
Convective Mass Transport in Cross-Corrugated Membrane Exchangers
,”
J. Membrane Sci.
,
260
, pp.
75
83
.10.1016/j.memsci.2005.03.029
10.
Zhang
,
L.
, and
Chen
,
Z.
,
2011
, “
Convective Heat Transfer in Cross-Corrugated Triangular Ducts Under Uniform Heat Flux Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
54
, pp.
597
605
.10.1016/j.ijheatmasstransfer.2010.09.010
11.
Scott
,
K.
, and
Lobato
,
J.
,
2003
, “
Mass Transport in Cross-Corrugated Membranes and the Influence of TiO2 for Separation Processes
,”
Ind. Eng. Chem. Res.
,
42
, pp.
5697
5701
.10.1021/ie030374b
12.
Dong
,
J. Q.
,
Chen
,
J. P.
,
Zhang
,
W. F.
, and
Hu
,
J. W.
,
2010
, “
Experimental and Numerical Investigation of Thermal-Hydraulic Performance in Wavy Fin-and-Flat Tube Heat Exchangers
,”
Appl. Therm. Eng.
,
30
, pp.
11
12
.10.1016/j.applthermaleng.2010.02.027
13.
Gupta
,
R. R.
,
Geyer
,
P. E.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
,
2008
, “
Thermohydraulic Performance of a Periodic Trapezoidal Channel With a Triangular Crosssection
,”
Int. J. Heat Mass Transfer
,
51
, pp.
2925
2929
.10.1016/j.ijheatmasstransfer.2007.09.017
14.
Lee
,
D. H.
,
Rhee
,
D. H.
,
Kim
,
K. M.
,
Cho
,
H. H.
, and
Moon
,
H. K.
,
2009
, “
Heat Transfer and Flow Temperature Measurements in a Rotating Triangular Channel With Various Rib Arrangements
,”
Heat Mass Transfer
,
45
, pp.
1543
1553
.10.1007/s00231-009-0529-2
15.
Gaiser
,
G.
, and
Kottke
,
V.
,
1989
, “
Flow Phenomena and Local Heat and Mass Transfer in Corrugated Passages
,”
Chem. Eng. Technol.
,
12
, pp.
400
405
.10.1002/ceat.270120157
16.
Stasiek
,
J.
,
Collins
,
M. W.
,
Ciofalo
,
M.
, and
Chew
,
P. E.
,
1996
, “
Investigation of Flow and Heat Transfer in Corrugated Passages-I Experimental Results
,”
Int. J. Heat Mass Transfer
,
39
, pp.
149
164
.10.1016/S0017-9310(96)85013-7
17.
Ciofalo
,
M.
,
Stasiek
,
J.
, and
Collins
,
M. W.
,
1996
, “
Investigation of Flow and Heat Transfer in Corrugated Passages-II Numerical Simulations
,”
Int. J. Heat Mass Transfer
,
39
, pp.
165
192
.10.1016/S0017-9310(96)85014-9
18.
Stasiek
,
J.
,
1998
, “
Experimental Studies of Heat Transfer and Fluid Flow Across Corrugated-Undulated Heat Exchanger Surface
,”
Int. J. Heat Mass Transfer
,
41
, pp.
899
914
.10.1016/S0017-9310(97)00168-3
19.
Utriainen
,
E.
, and
Sunden
,
B.
,
2002
, “
Evaluation of the Cross Corrugated and Some Other Candidate Heat Transfer Surfaces for Microturbine Recuperators
,”
ASME J. Eng. Gas Turbines Power
,
124
, pp.
550
560
.10.1115/1.1456093
20.
Utriainen
,
E.
, and
Sunden
,
B.
,
2002
, “
A Numerical Investigation of Primary Surface Rounded Cross Wavy Ducts
,”
Heat Mass Transfer
,
38
, pp.
537
542
.10.1007/s002310100243
21.
Blomerius
,
H.
,
Holsken
,
C.
, and
Mitra
,
N. K.
,
1999
, “
Numerical Investigation of Flow Field and Heat Transfer in Cross-Corrugated Ducts
,”
ASME J. Heat Transfer
,
121
, pp.
314
321
.10.1115/1.2825982
22.
Ahn
,
C. H.
,
Choi
,
J.
,
Son
,
C.
,
Min
,
J. K.
,
Park
,
S. H.
,
Gillespie
,
D.
, and
Go
,
J. S.
,
2013
, “
Measurement of Pressure Distribution Inside a Cross-Corrugated Heat Exchanger Using Microchannel Pressure Tappings
,”
Meas. Sci. Technol.
,
24
, p.
035306
.10.1088/0957-0233/24/3/035306
23.
Kays
,
W. M.
, and
Londen
,
A. L.
,
1984
,
Compact Heat Exchanger
, 3rd ed.,
McGraw-Hill
,
Toronto
.
24.
Focke
,
W. M.
,
Zachariades
,
J.
, and
Olivier
,
I.
,
1985
, “
The Effect of the Corrugation Inclination Angle on the Thermohydraulic Performance of Plate Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
28
, pp.
1469
1479
.10.1016/0017-9310(85)90249-2
25.
Burns
,
A. D.
, and
Wilkes
,
N. S.
,
1987
, “
A Finite-Difference Method for the Computation of Fluid Flows in Complex Three-Dimensional Geometries
,”
Report No. AERE-R 12342, Harwell, UK
.
26.
VanDoormal
,
J. R.
, and
Raithby
,
G. D.
,
1984
, “
Enhancements of the Simple Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
, pp.
147
163
.10.1080/01495728408961817
27.
Tao
,
W. Q.
,
2005
,
Numerical Heat Transfer
, 2nd ed.,
Xi'an Jiaotong University Press
,
Xi'an
, pp.
488
490
.
28.
Pucci
,
P. F.
,
Howard
,
C. P.
, and
Piersall
,
C. H.
,
1967
, “
The Single Blow Transient Testing Technique for Compact Heat Exchanger Surfaces
,”
J. Eng. Power
,
89
, pp.
29
40
.10.1115/1.3616604
29.
Furnas
,
C. C.
,
1932
, “
Heat Transfer From a Gas Stream to a Bed of Broken Solids
,” U.S. Bureau of Mines Bulletin, No. 361.
30.
Cai
,
Z. H.
,
Li
,
M. L.
,
Wu
,
Y. W.
, and
Ren
,
H. S.
,
1984
, “
A Modified Selected Point Matching Technique for Testing Compact Heat Exchanger Surfaces
,”
Int. J. Heat Mass Transfer
,
27
, pp.
971
978
.10.1016/0017-9310(84)90113-3
31.
Liang
,
C. Y.
, and
Yang
,
W. J.
,
1975
, “
Modified Single-Blow Technique for Performance Evaluation on Heat Transfer Surfaces
,”
ASME J. Heat Transfer
,
97
, pp.
16
21
.10.1115/1.3450280
32.
Roetzel
,
W.
, and
Luo
,
X.
,
1998
, “
Extended Temperature Oscillation Measurement Technique for Heat Transfer and Axial Dispersion Coefficients
,”
Rev. Gen. Therm.
,
37
, pp.
277
283
.10.1016/S0035-3159(98)80095-0
33.
Luo
,
X.
,
Roetzel
,
W.
, and
Ludersen
,
U.
,
2001
, “
The Single-Blow Transient Testing Technique Considering Longitudinal Core Conduction and Fluid Dispersion
,”
Int. J. Heat Mass Transfer
,
44
, pp.
121
129
.10.1016/S0017-9310(00)00089-2
34.
Luo
,
X.
, and
Roetzel
,
W.
,
2001
, “
The Single-Blow Transient Testing Technique for Plate-Fin Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
44
, pp.
3745
3753
.10.1016/S0017-9310(01)00019-9
35.
Moffat
,
R. J.
,
1985
, “
Using Uncertainty Analysis in the Planning of an Experiment
,”
ASME J. Fluids Eng.
,
107
, pp.
173
178
.10.1115/1.3242452
36.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiment
,”
ASME Mech. Eng.
,
75
, pp.
3
8
.10.1016/0894-1777(88)90043-X
37.
Stephen
,
K.
,
1959
, “
Wärme übergang und druckabfall bei nicht ausgerbildeter laminarströmung in rohren und in ebenen spalten
,”
Chemie. Ing. Theh.
,
31
, pp.
778
773
.
You do not currently have access to this content.