An experimental study on single-phase heat transfer and fluid flow downstream a single microscale pillar in a microchannel was conducted. A secondary jet flow was issued from slits formed along the pillar. A comparison of the thermal performances of a plain microchannel, a microchannel with a pillar, and a microchannel with a jet issued from a pillar was performed to elucidate the merits of this heat transfer enhancement technique. It was found that the presence of a pillar upstream the heater enhanced the heat transfer; the addition of jet flow issued from a pillar further enhanced the heat transfer. At a Reynolds number of 730, an improvement of spatially averaged Nusselt number of 80% was achieved due to the combined effect of the pillar and the jet compared with the corresponding plain channel. Micro particle image velocimetry (μPIV) measurements provided planar velocity fields at two planes along the channel height, and allowed flow structure visualization. Turbulent kinetic energy (TKE) was used to measure flow mixing and to quantify the hydrodynamic effect of the jet. It was shown that the TKE is closely related to the Nusselt number.

References

1.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
Single-Phase Heat Transfer Enhancement Techniques in Microchannel and Minichannel Flows
,”
2nd International Conference on Microchannels and Minichannels
,
Rochester, NY
, pp.
141
148
.
2.
Kandlikar
,
S.
,
Joshi
,
S.
, and
Tian
,
S.
,
2003
, “
Effect of Surface Roughness on Heat Transfer and Fluid Flow Characteristics at Low Reynolds Numbers in Small Diameter Tubes
,”
Heat Transfer Eng.
,
24
(
3
), pp.
4
16
.10.1080/01457630304069
3.
Wei
,
X. J.
,
Joshi
,
Y. K.
, and
Ligrani
,
P. M.
,
2007
, “
Numerical Simulation of Laminar Flow and Heat Transfer Inside a Microchannel With One Dimpled Surface
,”
ASME J. Electron. Packag.
,
129
(
1
), pp.
63
–70.10.1115/1.2429711
4.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2006
, “
Single-Phase Liquid Heat Transfer in Plain and Enhanced Microchannels
,”
Proceedings of the 4th International Conference on Nanochannels
,
Microchannels, and Minichannels, Limerick, Ireland
, pp.
943
951
.
5.
Koşar
,
A.
, and
Peles
,
Y.
,
2006
, “
Thermal-Hydraulic Performance of MEMS-Based Pin Fin Heat Sink
,”
ASME J. Heat Transfer
,
128
(
2
), pp.
121
–131.10.1115/1.2137760
6.
Tullius
,
J. F.
,
Tullius
,
T. K.
, and
Bayazitoglu
,
Y.
,
2012
, “
Optimization of Short Micro Pin Fins in Minichannels
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
3921
3932
.10.1016/j.ijheatmasstransfer.2012.03.022
7.
Go
,
J. S.
,
2003
, “
Design of a Microfin Array Heat Sink Using Flow-Induced Vibration to Enhance the Heat Transfer in the Laminar Flow Regime
,”
Sens. Actuators, A
,
105
(
2
), pp.
201
210
.10.1016/S0924-4247(03)00101-8
8.
Cho
,
C.-C.
,
Chen
,
C.-L.
, and
Chen
,
C.-K.
,
2012
, “
Mixing Enhancement in Crisscross Micromixer Using Aperiodic Electrokinetic Perturbing Flows
,”
Int. J. Heat Mass Transfer
,
55
(
11–12
), pp.
2926
2933
.10.1016/j.ijheatmasstransfer.2012.02.006
9.
Persoons
,
T.
,
Saenen
,
T.
,
Van Oevelen
,
T.
, and
Baelmans
,
M.
,
2012
, “
Effect of Flow Pulsation on the Heat Transfer Performance of a Minichannel Heat Sink
,”
ASME J. Heat Transfer
,
134
(
9
), p.
091702
.10.1115/1.4006485
10.
Jin
,
D. X.
,
Lee
,
Y. P.
, and
Lee
,
D. Y.
,
2007
, “
Effects of the Pulsating Flow Agitation on the Heat Transfer in a Triangular Grooved Channel
,”
Int. J. Heat Mass Transfer
,
50
(
15–16
), pp.
3062
3071
.10.1016/j.ijheatmasstransfer.2006.12.001
11.
Gillespie
,
M. B.
,
Black
,
W. Z.
,
Rinehart
,
C.
, and
Glezer
,
A.
,
2006
, “
Local Convective Heat Transfer From a Constant Heat Flux Flat Plate Cooled by Synthetic Air Jets
,”
ASME J. Heat Transfer
,
128
(
10
), pp.
990
1000
.10.1115/1.2345423
12.
Pavlova
,
A.
, and
Amitay
,
M.
,
2006
, “
Electronic Cooling Using Synthetic Jet Impingement
,”
ASME J. Heat Transfer
,
128
(
9
), pp.
897
907
.10.1115/1.2241889
13.
Utturkar
,
Y.
,
Arik
,
M. C.
,
Seeley
,
E.
, and
Gursoy
,
M.
,
2008
, “
An Experimental and Computational Heat Transfer Study of Pulsating Jets
,”
ASME J. Heat Transfer
,
130
(
6
), p.
062201
.10.1115/1.2891158
14.
Chandratilleke
,
T. T.
,
Jagannatha
,
D.
, and
Narayanaswamy
,
R.
,
2010
, “
Heat Transfer Enhancement in Microchannels With Cross-Flow Synthetic Jets
,”
Int. J. Therm. Sci.
,
49
(
3
), pp.
504
513
.10.1016/j.ijthermalsci.2009.09.004
15.
Fang
,
R.
,
Jiang
,
W.
,
Khan
,
J.
, and
Dougal
,
R.
,
2009
, “
Experimental Heat Transfer Enhancement for Single Phase Liquid Micro-Channel Cooling Using A Micro-Synthetic Jet Actuator
,”
Proceedings of ASME 2nd Micro/Nanoscale Heat and Mass Transfer International Conference
,
Shanghai, China
, pp.
1
8
.
16.
Peles
,
Y.
,
Koşar
,
A.
,
Mishra
,
C.
,
Kuo
,
C.-J.
, and
Schneider
,
B.
,
2005
, “
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3615
3627
.10.1016/j.ijheatmasstransfer.2005.03.017
17.
Siu-Ho
,
A.
,
Qu
,
W.
, and
Pfefferkorn
,
F.
,
2007
, “
Experimental Study of Pressure Drop and Heat Transfer in a Single-Phase Micropin-Fin Heat Sink
,”
ASME J. Electron. Packaging
,
129
(
4
), pp.
479
487
.10.1115/1.2804099
18.
Prasher
,
R.
, and
Chang
,
J.-Y.
,
2008
, “
Cooling of Electronic Chips Using Microchannel and Micro-Pin Fin Heat Exchangers
,”
ASME 6th International Conference on Nanochannels
,
Microchannels, and Minichannels, Darmstadt, Germany
, pp.
1881
1887
.
19.
Wang
,
Y.
,
Houshmand
,
F.
,
Elcock
,
D.
, and
Peles
,
Y.
,
2013
, “
Convective Heat Transfer and Mixing Enhancement in a Microchannel With a Pillar
,”
Int. J. Heat Mass Transfer
,
62
, pp.
553
561
.10.1016/j.ijheatmasstransfer.2013.03.034
20.
Garimella
,
S. V.
,
Persoons
,
T.
,
Weibel
,
J.
, and
Yeh
,
L.-T.
,
2013
, “
Technological Drivers in Data Centers and Telecom Systems: Multiscale Thermal, Electrical, and Energy Management
,”
Appl. Energy
,
107
, pp.
66
80
.10.1016/j.apenergy.2013.02.047
21.
Michna
,
G. J.
,
Browne
,
E. A.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2009
, “
Single-Phase Microscale Jet Stagnation Point Heat Transfer
,”
ASME J. Heat Transfer
,
131
(
11
), p.
111402
.10.1115/1.3154750
22.
Browne
,
E. A.
,
Michna
,
G. J.
,
Jensen
,
M. K.
, and
Peles
,
Y.
,
2010
, “
Experimental Investigation of Single-Phase Microjet Array Heat Transfer
,”
ASME J. Heat Transfer
,
132
(
4
), p.
041013
.10.1115/1.4000888
23.
Sung
,
M. K.
, and
Mudawar
,
I.
,
2008
, “
Single-Phase and Two-Phase Heat Transfer Characteristics of Low Temperature Hybrid Micro-Channel/Micro-Jet Impingement Cooling Module
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3882
3895
.10.1016/j.ijheatmasstransfer.2007.12.016
24.
Mahesh
,
K.
,
2012
, “
The Interaction of Jets With Crossflow
,”
Annu. Rev. Fluid Mech.
,
45
, pp.
379
407
.10.1146/annurev-fluid-120710-101115
25.
Wu
,
H. L.
,
Peng
,
X. F.
, and
Chen
,
T. K.
,
2003
, “
Influence of Sleeve Tube on the Flow and Heat Transfer Behavior at a T-Junction
,”
Int. J. Heat Mass Transfer
,
46
(
14
), pp.
2637
2644
.10.1016/S0017-9310(03)00013-9
26.
Jung
,
J.
,
2011
, “
Physics of Active Flow Control Around a Pillar at the Micro Scale
,” Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY.
27.
Elcock
,
D.
,
Jung
,
J.
,
Kuo
,
C.-J.
,
Amitay
,
M.
, and
Peles
,
Y.
,
2011
, “
Interaction of a Liquid Flow Around a Micropillar With a Gas Jet
,”
Phys. Fluids
,
23
(
12
), p.
122001
.10.1063/1.3662436
28.
Elcock
,
D.
,
Honkanen
,
M.
,
Kuo
,
C.-J.
,
Amitay
,
M.
, and
Peles
,
Y.
,
2011
, “
Bubble Flowing Past a Micro Pillar
,”
Int. J. Multiphase Flow
,
37
(
5
), pp.
440
452
.10.1016/j.ijmultiphaseflow.2010.12.004
29.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
30.
Incropera
,
F. P.
,
2006
,
Introduction to Heat Transfer
,
John Wiley & Sons
,
New York
, pp.
482
483
.
31.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
,
Academic
,
New York
, p.
477
.
32.
Jung
,
J.
,
Kuo
,
C.-J.
,
Peles
,
Y.
, and
Amitay
,
M.
,
2012
, “
The Flow Field Around a Micropillar Confined in a Microchannel
,”
Int. J. Heat Fluid Flow
,
36
, pp.
118
132
.10.1016/j.ijheatfluidflow.2012.04.009
You do not currently have access to this content.