A numerical analysis of the flow field in rough microchannel is carried out decomposing the computational physical domain into kinetic and continuum subdomains. Each domain size is determined by the value of a proper threshold parameter, based on the local Knudsen number and local gradients of macroparameters. This switching parameter is computed from a preliminary Navier–Stokes (NS) solution throughout the whole physical domain. The solution is then advanced in time simultaneously in both kinetic and continuum domains: The coupling is achieved by matching half fluxes at the interface of the kinetic and Navier–Stokes domains, taking care of the conservation of momentum, energy, and mass through the interface. The roughness geometry is modeled as a series of triangular obstructions with a relative roughness up to a maximum of 5% of the channel height. A wide range of Mach numbers is considered, from nearly incompressible to chocked flow conditions 0.001 ≤ Ma ≤ 0.75 and a Reynolds number up to 170. To estimate rarefaction effect, the flow at Knudsen number ranging from 0.01 to 0.08 and fixed pressure ratio has been considered. Accuracy and discrepancies between full Navier–Stokes, kinetic, and coupled solutions are discussed, assessing the range of applicability of first order slip condition in rough geometries. The effect of the roughness is discussed via Poiseuille number as a function of local Knudsen and Mach numbers.

References

1.
Mala
,
G. M.
, and
Li
,
D.
,
1999
, “
Flow Characteristics of Water in Microtubes
,”
Int. J. Heat Mass Transfer
,
20
, pp.
142
148
.10.1016/S0142-727X(98)10043-7
2.
Wu
,
P. Y.
, and
Little
,
W. A.
,
1983
, “
Measurement of Friction Factor for the Flow of Gases in Very Fine Channels Used for Microminiature Joule–Thomson Refrigerator
,”
Cryogenics
,
23
, pp.
273
277
.10.1016/0011-2275(83)90150-9
3.
Wu
,
P. Y.
, and
Little
,
W. A.
,
1984
, “
Measurement of the Heat Transfer Characteristics of Gas Flow in Fine Channel Heat Exchangers Used for Microminiature Refrigerators
,”
Cryogenics
,
24
, pp.
415
420
.10.1016/0011-2275(84)90015-8
4.
Choi
,
S. B.
,
Barron
,
R. F.
, and
Warrington
,
R. O.
,
1991
, “
Fluid Flow and Heat Transfer in Microtubes
,”
ASME J. Dyn. Syst., Meas., Control
,
32
, pp.
123
133
.
5.
Morini
,
G. L.
,
2004
, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
,
43
(
7
), pp.
631
651
.10.1016/j.ijthermalsci.2004.01.003
6.
Kandlikar
,
S.
,
Schmitt
,
D.
,
Carrano
,
A.
, and
Taylor
,
J.
,
2005
, “
Characterization of Surface Roughness Effects on Pressure Drop in Single-Phase Flow in Minichannels
,”
Phys. Fluids
,
17
(
10
), pp.
1
11
.10.1063/1.1896985
7.
Croce
,
G.
,
D'Agaro
,
P.
, and
Nonino
,
C.
,
2007
, “
Three-Dimensional Roughness Effect on Microchannel Heat Transfer and Pressure Drop
,”
Int. J. Heat Mass Transfer
,
50
, pp.
5249
5259
.10.1016/j.ijheatmasstransfer.2007.06.021
8.
Turner
,
S. E.
,
Lam
,
L. C.
,
Faghri
,
M.
, and
Gregory
,
O. J.
,
2004
, “
Experimental Investigation of Gas Flow in Microchannels
,”
ASME J. Heat Transfer
,
126
, pp.
753
762
.10.1115/1.1797036
9.
Lorenzini
,
G.
,
Morini
,
G. L.
, and
Salvigni
,
S.
,
2010
, “
Laminar, Transitional and Turbulent Friction Factors for Gas Flows in Smooth and Rough Microchannels
,”
Int. J. Therm. Sci.
,
49
, pp.
248
255
.10.1016/j.ijthermalsci.2009.07.025
10.
Demsis
,
A.
,
Prabhu
,
S. V.
, and
Agrawal
,
A.
,
2010
, “
Influence of Wall Conditions on Friction Factor for Flow of Gases Under Slip Conditions
,”
Exp. Therm. Fluid Sci.
,
34
, pp.
1448
1455
.10.1016/j.expthermflusci.2010.07.008
11.
Tang
,
G. H.
,
Li
,
Z.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2007
, “
Experimental Study of Compressibility, Roughness and Rarefaction Influences on Microchannel Flow
,”
Int. J. Heat Mass Transfer
,
50
, pp.
2282
2295
.10.1016/j.ijheatmasstransfer.2006.10.034
12.
Hu
,
Y.
,
Werner
,
C.
, and
Li
,
D.
,
2003
, “
Influence of Three-Dimensional Roughness on Pressure-Driven Flow Through Microchannels
,”
ASME J. Fluid Eng.
,
125
, pp.
871
879
.10.1115/1.1598993
13.
Croce
,
G.
, and
D'Agaro
,
P.
,
2005
, “
Numerical Simulation of Roughness Effect on Microchannel Heat Transfer and Pressure Drop in Laminar Flow
,”
J. Phys. D: Appl. Phys.
,
38
(
10
), pp.
1518
1530
.10.1088/0022-3727/38/10/005
14.
Valses
,
R.
,
Miana
,
J.
,
Pelegay
,
L.
,
Nunez
,
L.
, and
Putz
,
T.
,
2007
, “
Numerical Investigation of the Influence of Roughness on the Laminar Incompressible Fluid Flow Through Annular Microchannels
,”
Int. J. Heat Mass Transfer
,
50
, pp.
1865
1878
.10.1016/j.ijheatmasstransfer.2006.10.006
15.
Kleinstreuer
,
C.
, and
Koo
,
J.
,
2004
, “
Computational Analysis of Wall Roughness Effects for Liquid Flow in Micro-Conduits
,”
ASME J. Fluid Eng.
,
126
, pp.
1
9
.10.1115/1.1637633
16.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2005
, “
Analysis of Surface Roughness Effects on Heat Transfer in Micro-Conduits
,”
Int. J. Heat Mass Transfer
,
48
, pp.
2625
2634
.10.1016/j.ijheatmasstransfer.2005.01.024
17.
Sun
,
H.
, and
Faghri
,
M.
,
2003
, “
Effect of Surface Roughness on Nitrogen Flow in a Microchannel Using the Direct Simulation Monte Carlo Method
,”
Numer. Heat Transfer, Part A
,
43
, pp.
1
8
.10.1080/10407780307302
18.
Cao
,
B.
,
Chen
,
M.
, and
Guo
,
Z.
,
2004
, “
Rarefied Gas Flow in Rough Microchannels by Molecular Dynamics Simulation
,”
Chin. Phys. Lett.
,
21
(
9
), pp.
1777
1779
.10.1088/0256-307X/21/9/028
19.
Liu
,
C.
,
Yanga
,
J.
, and
Ni
,
Y.
,
2011
, “
A Multiplicative Decomposition of Poiseuille Number on Rarefaction and Roughness by Lattice Boltzmann Simulation
,”
Comp. Math. Appl.
,
61
, pp.
3528
3536
.10.1016/j.camwa.2010.03.030
20.
Ji
,
Y.
,
Yuan
,
K.
, and
Chung
,
J.
,
2006
, “
Numerical Simulation of Wall Roughness on Gaseous Flow and Heat Transfer in a Microchannel
,”
Int. J. Heat Mass Transfer
,
49
, pp.
1329
1339
.10.1016/j.ijheatmasstransfer.2005.10.011
21.
Croce
,
G.
, and
D'Agaro
,
P.
,
2007
, “
Compressibility and Rarefaction Effects on Pressure Drop in Rough Microchannels
,”
Heat Transfer Eng.
,
28
(
8–9
), pp.
688
695
.10.1080/01457630701326324
22.
Hakak Khadem
,
M.
,
Shams
,
M.
, and
Hossainpour
,
S.
,
2009
, “
Effects of Rarefaction and Compressibility on Fluid Flow at Slip Flow Regime by Direct Simulation of Roughness
,”
Int. J. Aerosp. Mech. Eng.
,
3
(
4
), pp.
204
210
. Available at http://www.waset.org/journals/ijame/v3/v3-4-33.pdf
23.
Croce
,
G.
, and
D'Agaro
,
P.
,
2009
, “
Compressibility and Rarefaction Effects on Heat Transfer in Rough Microchannels
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
252
260
.10.1016/j.ijthermalsci.2008.07.009
24.
Colin
,
S.
,
2012
, “
Gas Microflows in the Slip Flow Regime: A Critical Review on Convective Heat Transfer
,”
ASME J. Heat Transfer
,
134
(
2
), pp.
1
13
.10.1115/1.4005063
25.
Shakhov
,
E. M.
,
1974
,
A Method for Calculating Rarefied Gas Flows
,
Nauka
,
Moscow
.
26.
Carlson
,
H. A.
,
Roveda
,
R.
,
Boyd
,
I. D.
, and
Candler
,
G. V.
,
2004
, “
A Hybrid CFD-DSMC Method of Modeling Continuum-Rarefied Flows
,” AIAA Paper No. 2004-1180.
27.
Lockerby
,
D. A.
,
Reese
,
J. M.
, and
Struchtrup
,
H.
,
2009
, “
Switching Criteria for Hybrid Rarefied Gas Flow Solvers
,”
Proc. R. Soc. London
,
465
, pp.
1581
1598
.10.1098/rspa.2008.0497
28.
Kolobov
,
V. I.
,
Arslanbekov
,
R. R.
,
Aristov
,
V. V.
,
Frolova
,
A. A.
, and
Zabelok
,
S. A.
,
2007
, “
Unified Solver for Rarefied and Continuum Flows With Adaptive Mesh and Algorithm Refinement
,”
J. Comput. Phys.
,
223
, pp.
589
608
.10.1016/j.jcp.2006.09.021
29.
Croce
,
G.
,
1995
, “
Viscous 3D Cascade Flow Analysis Using an RNG Algebraic Turbulence Mode
,” ASME Paper No. 95-CTP-78.
30.
Croce
,
G.
, and
Rovenskaya
,
O.
,
2010
, “
Numerical Analysis of Rarefaction and Compressibility Effects in Bent Microchannels
,” ASME Paper No. ICNMM2010-30489.
31.
Pulliam
,
T. H.
,
1986
, “
Artificial Dissipation Models for the Euler Equations
,”
AIAA J.
,
24
, pp.
1931
1940
.10.2514/3.9550
32.
Asako
,
Y.
,
Pi
,
T.
,
Turner
,
S. E.
, and
Faghri
,
M.
,
2002
, “
Effect of Compressibility on Gaseous Flows in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
46
, pp.
3041
3050
.10.1016/S0017-9310(03)00074-7
33.
Rovenskaya
,
O.
, and
Croce
,
G.
,
2013
, “
Coupling Kinetic and Continuum Equations for Micro Scale Flow Computations
,”
Heat Transfer Eng.
,
34
(
2–3
), pp.
192
203
.10.1080/01457632.2013.703542
You do not currently have access to this content.