We present a new computational method that excites guided phonon modes in nanoscale waveguides at a specific frequency and wavenumber. The method uses nonequilibrium molecular dynamics and Fourier analysis of particle displacements to extract mode shapes from single frequency excitations consisting of superposed spatial modes. These mode shapes are used to excite the waveguide inlet boundary so that single phonon modes are generated in the structure. Mode shapes and phonon spectra for a silicon planar waveguide with rigid wall boundaries are calculated to demonstrate the viability of the technique. This method improves upon molecular dynamics techniques that activate all possible phonon modes and are thus not able to isolate the contribution of any single phonon excitation. Application of our method will enable the computational investigation of single phonon mode propagation in nanostructures of varying geometry.

References

1.
Liu
,
W.
, and
Asheghi
,
M.
, 2004,
“Phonon–Boundary Scattering in Ultrathin Single-Crystal Silicon Layers,”
Appl. Phys. Lett.
,
84
, pp.
3819
3821
.
2.
Li
,
D.
,
Wu
,
Y.
,
Kim
,
P.
,
Shi
,
L.
,
Yang
,
P.
, and
Majumdar
,
A.
, 2003,
“Thermal Conductivity of Individual Silicon Nanowires,”
Appl. Phys. Lett.
,
83
, pp.
2934
2936
.
3.
A.
Balandin
, and
Wang
,
K. L.
, 1998,
“Significant Decrease of the Lattice Thermal Conductivity Due to Phonon Confinement in a Free-Standing Semiconductor Quantum Well,”
Phys. Rev. B
,
58
, pp.
1544
1549
.
4.
Hochbaum
,
A. I.
,
Chen
,
R.
,
Delgado
,
R. D.
,
Liang
,
W.
,
Garnett
,
E. C.
,
Najarian
,
M.
,
Majumdar
,
A.
,
Yang
,
P.
, and
P.
Yang
, 2008,
“Enhanced Thermoelectric Performance of Rough Silicon Nanowires,”
Nature (London)
,
451
, pp.
163
167
.
5.
Mukdadi
,
O. M.
,
Datta
,
S. K.
, and
Dunn
,
M. L.
, 2005
“Acoustic-Phonon Dispersion in Nanowires,”
J. Appl. Phys.
,
97
, p.
074313
.
6.
Nishiguchi
,
N.
,
Ando
,
Y.
, and
Wybourne
,
M. N.
, 1997,
“Acoustic Phonon Modes of Rectangular Quantum Wires,”
J. Phys.: Condens. Matter
,
9
, pp.
5751
5764
.
7.
Pokatilov
,
E. P.
,
Nika
,
D. L.
, and
Balandin
,
A. A.
, 2005,
“Acoustic-Phonon Propagation in Rectangular Semiconductor Nanowires With Elastically Dissimilar Barriers,”
Phys. Rev. B
,
72
, p.
113311
.
8.
Allen
,
M. P.
, and
Tildesley
,
D. J.
, 1987,
Computer Simulation of Liquids
,
Clarendon Press
,
Oxford.
9.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
, 2002,
“Phonon Wave-Packet Dynamics at Semiconductor Interfaces by Molecular-Dynamics Simulation,”
Appl. Phys. Lett.
,
80
, pp.
2484
2486
.
10.
Becker
,
B.
,
Schelling
,
P. K.
, and
Phillpot
,
S. R.
, 2006,
“Interfacial Phonon Scattering in Semiconductor Nanowires by Molecular-Dynamics Simulation,”
J. Appl. Phys.
,
99
, p.
123715
.
11.
Kondo
,
N.
,
Yamamoto
,
T.
, and
Watanabe
,
K.
, 2006,
“Phonon Wavepacket Scattering Dynamics in Defective Carbon Nanotubes,”
Jpn J. Appl. Phys.
,
45
, pp.
L963
L965
.
12.
Zuckerman
,
N.
, and
Lukes
,
J. R.
, 2008,
“Acoustic Phonon Scattering From Particles Embedded in an Anisotropic Medium: A Molecular Dynamics Study,”
Phys. Rev. B
,
77
, p.
094302
.
13.
Stillinger
,
F. H.
, and
Weber
,
T. A.
, 1985,
“Computer Simulation of Local Order in Condensed Phases of Silicon,”
Phys. Rev. B
,
31
, pp.
5262
5271
.
14.
Mingo
,
N.
, 2003,
“Calculation of Si Nanowire Thermal Conductivity Using Complete Phonon Dispersion Relations,”
Phys. Rev. B
,
68
, p.
113308
.
15.
Shepard
,
D.
, 1968,
“A Two-Dimensional Interpolation Function for Irregularly-Spaced Data,”
Proceedings of the 1968 23rd ACM National Conference
,
New York
, pp.
517
524
.
16.
Thomas
,
J. A.
,
Turney
,
J. E.
,
Iutzi
,
R. M.
,
Amon
,
C. H.
, and
McGaughey
,
A. J. H.
, 2010,
“Predicting Phonon Dispersion Relations and Lifetimes From the Spectral Energy Density,”
Phys. Rev. B
,
81
, p.
081411
.
17.
Kluge
,
M. D.
, and
Ray
,
J. R.
, 1988,
“Elastic Constants and Density of States of a Molecular-Dynamics Model of Amorphous Silicon,”
Phys. Rev. B
,
37
, pp.
4132
4136
.
18.
Solie
,
L. P.
, and
Auld
,
B. A.
, 1973,
“Elastic Waves in Free Anisotropic Plates,”
J. Acoust. Soc. Am.
,
54
, p.
50
65
.
19.
Huang
,
W. Q.
,
Chen
,
K. Q.
,
Shuai
,
Z.
,
Wang
,
L.
,
Hu
,
W.
, and
Zou
,
B. S.
, 2005,
“Acoustic-Phonon Transmission and Thermal Conductance in a Double-Bend Quantum Waveguide,”
J. Appl. Phys.
,
98
, p.
093524
.
You do not currently have access to this content.