A detailed experimental study was carried out on the critical heat flux (CHF) condition for flow boiling of R134a in single circular microtubes. The test sections had inner diameters (ID) of 0.50 mm, 0.96 mm, and 1.60 mm. Experiments were conducted over a large range of mass flux, inlet subcooling, saturation pressure, and vapor quality. CHF occurred under saturated conditions at high qualities and increased with increasing mass fluxes, tube diameters, and inlet subcoolings. CHF generally, but not always, decreases with increasing saturation pressures and vapor qualities. The experimental data were mapped to the flow pattern maps developed by Hasan [2005, “Two-Phase Flow Regime Transitions in Microchannels: A Comparative Experimental Study,” Nanoscale Microscale Thermophys. Eng., 9, pp. 165–182] and Revellin and Thome [2007, “A New Type of Diabatic Flow Pattern Map for Boiling Heat Transfer in Microchannels,” J. Micromech. Microeng., 17, pp. 788–796]. Based on these maps, CHF mainly occurred in the annular flow regime in the larger tubes. The flow pattern for the 0.50 mm ID tube was not conclusively identified. Four correlations—the Bowring correlation, the Katto-Ohno correlation, the Thome correlation, and the Zhang correlation—were used to predict the experimental data. The correlations predicted the correct experimental trend, but the mean absolute error (MAE) was high (>15%) A new correlation was developed to fit the experimental data with a MAE of 10%.

1.
Hall
,
D. D.
, and
Mudawar
,
I.
, 2000, “
Critical Heat Flux (CHF) for Water Flow in Tubes—I. Compilation and Assessment of World CHF Data
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
2573
2604
.
2.
Roday
,
A. P.
, and
Jensen
,
M. K.
, 2009, “
Study of the Critical Heat Flux Condition with Water and R-123 During Flow Boiling in Microtubes. Part I: Experimental Results and Discussion of Parametric Effects
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
3235
3249
.
3.
Lazarek
,
G. M.
, and
Black
,
S. H.
, 1982, “
Evaporative Heat Transfer, Pressure Drop, and Critical Heat Flux in a Small Vertical Tube With R-113
,”
Int. J. Heat Mass Transfer
0017-9310,
25
(
7
), pp.
945
960
.
4.
Roach
,
G. M.
, Jr.
,
Abdel-Khalik
,
S. I.
,
Ghiaasiaan
,
S. M.
,
Dowling
,
M. F.
, and
Jeter
,
S. M.
, 1999, “
Low-Flow Critical Heat Flux in Microchannels
,”
Nucl. Sci. Eng.
0029-5639,
131
, pp.
411
425
.
5.
Yu
,
W.
,
France
,
D. M.
,
Wambsganss
,
M. W.
, and
Hull
,
J. R.
, 2002, “
Two-Phase Pressure Drop, Boiling Heat Transfer, and Critical Heat Flux to Water in a Small-Diameter Horizontal Tube
,”
Int. J. Multiphase Flow
0301-9322,
28
, pp.
927
941
.
6.
Wojtan
,
L.
,
Revellin
,
R.
, and
Thome
,
J. R.
, 2006, “
Investigation of Saturated Critical Heat Flux in a Single, Uniformly Heated Microchannel
,”
Exp. Therm. Fluid Sci.
0894-1777,
30
, pp.
765
774
.
7.
Katto
,
Y.
, and
Ohno
,
H.
, 1984, “
An Improved Version of the Generalized Correlation of Critical Heat Flux for the Forced Convective Boiling in Uniformly Heated Vertical Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
27
(
9
), pp.
1641
1648
.
8.
Koşar
,
A.
, and
Peles
,
Y.
, 2007, “
Critical Heat Flux of R-123 in Silicon-Based Microchannels
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
844
851
.
9.
Qu
,
W.
, and
Mudawar
,
I.
, 2004, “
Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
2045
2059
.
10.
Kuan
,
W. K.
, and
Kandlikar
,
S. G.
, 2006, “
Experimental Study of Saturated Flow Boiling Critical Heat Flux in Microchannels
,” ASME meeting, Limerick, Ireland, Jun. 19–21.
11.
Kuan
,
W. K.
, and
Kandlikar
,
S. G.
, 2008, “
Experimental Study and Model on Critical Heat Flux of Refrigerant-123 and Water in Microchannels
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
034503
.
12.
Kuo
,
C. J.
, and
Peles
,
Y.
, 2008, “
Flow Boiling Instabilities in Microchannels and Means for Mitigation by Reentrant Cavities
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
072402
.
13.
Bowers
,
M. B.
, and
Mudawar
,
I.
, 1994, “
High Flux Boiling in Low Flow Rate, Low Pressure Drop Mini-Channel and Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
2
), pp.
321
332
.
14.
Jiang
,
L.
,
Wong
,
M.
, and
Zohar
,
Y.
, 1999, “
Phase Change in Microchannel Heat Sinks With Integrated Temperature Sensors
,”
J. Microelectromech. Syst.
1057-7157,
8
(
4
), pp.
358
365
.
15.
Basu
,
S.
,
Ndaos
,
S.
,
Michna
,
G. J.
,
Peles
,
Y.
, and
Jensen
,
M. K.
, 2011, “
Flow Boiling of R134a in Circular Microtubes—Part I: Study of Heat Transfer Characteristics
,”
ASME J. Heat Transfer
0022-1481,
133
(
5
), p.
051502
.
16.
Basu
,
S.
,
Ndaos
,
S.
,
Michna
,
G. J.
,
Peles
,
Y.
, and
Jensen
,
M. K.
, 2010, “
Study of CHF Condition for Flow Boiling of R134a in Circular Microchannels
,”
Proceedings of the International Heat Transfer Conference, IHTC14
, Washington DC, Aug. 8–13.
17.
Zhang
,
T.
,
Tong
,
T.
,
Chang
,
J. -Y.
,
Peles
,
Y.
,
Prasher
,
R.
,
Jensen
,
M. K.
,
Wen
,
J. T.
, and
Phelan
,
P.
, 2009, “
Ledinegg Instability in Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
5661
5674
.
18.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
19.
Basu
,
S.
, 2009, “
Heat Transfer Characteristics for Flow Boiling of R134a in Horizontal Circular Microtubes
,” MS thesis, Rensselaer Polytechnic Institute, Troy, NY.
20.
Gnielinski
,
V.
, 1976, “
New Equations for Heat Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
0020-6318,
16
, pp.
359
368
.
21.
Carey
,
V. P.
, 1992,
Liquid-Vapor Phase Change Phenomena
,
Hemisphere
,
New York
, pp.
483
564
.
22.
Hassan
,
I.
,
Vaillancourt
,
M.
, and
Pehlivan
,
K.
, 2005, “
Two-Phase Flow Regime Transitions in Microchannels: A Comparative Experimental Study
,”
Nanoscale Microscale Thermophys. Eng.
1556-7265,
9
, pp.
165
182
.
23.
Revellin
,
R.
, and
Thome
,
J. R.
, 2007, “
A New Type of Diabatic Flow Pattern Map for Boiling Heat Transfer in Microchannels
,”
J. Micromech. Microeng.
0960-1317,
17
, pp.
788
796
.
24.
Bowring
,
R. W.
, 1972, “
A Simple but Accurate Round Tube Uniform Heat Flux Dryout Correlation over the Pressure Range 0.7–17 MN/m2
(100–2500 psia),”
UK Atomic Energy Authority
, Winfrith, England, Report AEEW-R789.
25.
Zhang
,
W.
,
Hibiki
,
T.
,
Mishima
,
K.
, and
Mi
,
Y.
, 2006, “
Correlation of Critical Heat Flux for Flow Boiling of Water in Mini-Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
1058
1072
.
You do not currently have access to this content.