We present an analysis of fluid flow and heat transfer through a single horizontal channel with permeable walls which are at different temperatures. The problem is set in the context of hot dry rock geothermal energy extraction where water, introduced through an injection well, passes through a horizontal fracture by which transfer of heat is facilitated through advection of the fluid flowing toward the recovery well. We consider the walls of the fracture to have properties of a permeable medium and we study the effect of slip boundary conditions on velocity and temperature profiles for low Reynolds number (< 7) based on a similarity solution and perturbation expansion. We show that the velocity and heat transfer profiles are altered with the channel width, the permeability and a slip coefficient α, which is a dimensionless constant related to the inherent properties of the channel.

References

1.
Phillips
,
O. M.
, 1991,
Flow and Reactions in Permeable Rocks
,
Cambridge University Press
,
Cambridge
.
2.
Christopher
,
H.
, and
Armstead
,
H.
, 1978,
Geothermal Energy
,
E and FN Spon
,
London
.
3.
Abe
,
H.
,
Keer
,
M.
, and
Mura
,
T.
, 1979, “
Theoretical Study of Hydraulically Fractured Penny-Shaped Cracks in Hot, Dry Rocks
,”
Int. J. Numer. Analyt. Meth. Geomech.
,
3
, pp.
79
96
.
4.
Heuer
,
N.
,
Kupper
,
T.
, and
Windelberg
,
D
., “
Mathematical Model of a Hot Dry Rock System
,”
Geophys. J. Int.
,
105
, pp.
659
664
.
5.
Crandall
,
D.
,
Ahmadi
,
G.
, and
Smith
,
D. H
. 2010, “
Computational Modelling of Fluid Flow Through a Fracture in Permeable Rock
,”
Transp. Porous Media
,
84
, pp.
493
510
.
6.
Glover
,
P. W. J.
,
Matsuki
,
K.
,
Hikima
,
R.
, and
Hayashi
,
K.
, 1998, “
Fluid Flow in Synthetic Rough Fractures and Application to the Hachimantai Geothermal Hot Dry Rock Site
,”
J. Geophys. Res.
,
103
(
B5
), pp.
9621
9635
.
7.
Neuville
,
A.
,
Toussaint
,
R.
, and
Schmittbuhl
,
J.
, 2010, “
Fracture Roughness and Thermal Exchange: A Case Study at Soultz-Sous-Forêts
,”
C. R. Geosci.
,
342
, pp.
616
625
.
8.
Liu
,
J.
,
Sheng
,
J.
,
Polak
,
A.
,
Elsworth
,
D.
,
Yasuhara
,
H.
, and
Grader
,
A.
, 2006, “
A Fully-Coupled Hydrological-Mechanical-Chemical Model for Fracture Sealing and Preferential Opening
,”
Int. J. Rock Mech. Min. Sci.
,
43
(
1
), pp.
23
36
.
9.
Moreno
,
L.
,
Tsang
,
Y. W.
,
Tsang
,
C. F.
, and
Hale
,
F. V.
, 1988, “
Flow and Tracer Transport in a Single Fracture: A Stochastic Model and its Relation to Some Field Observations
,”
Water Resour. Res.
,
24
, pp.
2033
48
.
10.
Witherspoon
,
P. A.
, and
Long
,
J. C. S.
, 1987,
“Some Recent Developments in Understanding the Hydrology of Fractured Rocks,”
28th US Symposium on Rock Mechanics.
11.
Sausse
,
J.
, and
Genter
,
A.
, 2005,
“Types of Permeable Fractures in Granite,”
Petrophysical Properties of Crystalline Rocks
,
P. K.
Harvey
,
T. S.
Brewer
,
P. A.
Pezard
, and
V. A.
Petrov
, eds.,
Geological Society
,
London
, Vol.
240
, pp.
1
14
.
12.
Zimmerman
,
R. W.
,
Kumar
,
S.
, and
Bodvarsson
,
G. S.
, 1991, “
Lubrication Theory Analysis of Permeability of Rough-Walled Fractures
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
28
(
4
), pp.
325
331
.
13.
Brown
,
S.
, 1987, “
Fluid Flow Through Rock Joints: The Effect of Surface Roughness
,”
J. Geophys. Res
,
92B
, pp.
1337
47
.
14.
Berkowitz
,
B.
, 1989, “
Boundary Conditions Along Permeable Fracture Walls: Influence on Flow and Conductivity
,”
Water Resour. Res.
,
25
, pp.
1919
1922
.
15.
Beavers
,
G. S.
, and
Joseph
,
D. D.
, 1967, “
Boundary Conditions at a Naturally Permeable Wall
,”
J. Fluid Mech.
,
30
, pp.
197
207
.
16.
Beavers
,
G. S.
,
Sparrow
,
E. M.
, and
Magnuson
,
R. A.
, 1970, “
Experiments on Coupled Parallel Flows in a Channel and Bounding Porous Medium
,”
Trans. ASME J. Basic Eng.
,
92
, pp.
843
848
.
17.
A. S.
Berman
, 1953,
“Laminar Flow in Channels With Porous Walls,”
J. Appl. Phys.
,
24
(
9
), pp.
1232
1235
.
18.
Terrill
,
R. M.
, and
Shrestha
,
G. M.
, 1965, “
Laminar Flow Through Parallel and Uniformly Porous Walls of Different Permeability
,”
ZAMP
,
16
, pp.
470
482
.
19.
Neale
,
G.
, and
Nader
,
W.
, 1974, “
Practical Significance of Brinkman’s Extension of Darcy’s Law: Coupled Parallel Flows Within a Channel and a Bounding Porous Medium
,”
Can. J. Chem. Eng.
,
52
, pp.
475
478
.
20.
Ligrani
,
P.
,
Blanchard
,
D.
, and
Gale
,
B.
, 2010, “
Slip Due to Surface Roughness for a Newtonian Liquid in a Viscous Microscale Pump
,”
Phys. Fluids
,
22
, p.
052002
.
21.
Popov
,
P.
,
Qin
,
G.
,
Bi
,
L.
,
Efendiev
,
Y.
,
Kang
,
Z.
, and
Li
,
J.
, 2009, “
Multiphysics and Multiscale Methods for Modeling Fluid Flow Through Naturally Fractured Carbonate Karst Reservoirs
,”
SPE Reservoir Eval. Eng.
,
12
(
2
), pp.
218
231
.
22.
Gustafson
,
C. W.
, 1988, “
Leakage Losses From a Hydraulic Fracture and Fracture Propagation
,”
Phys. Fluids
,
31
(
11
), pp.
3180
3187
.
23.
Chopra
,
P.
, and
Wyborn
,
D.
, 2003,
“Australia’s First Hot Dry Rock Geothermal Energy Extraction Project is Up and Running in the Granite Beneath the Cooper Basin,”
Magmas to Mineralisation. The Ishihara Symposium
,
P.
Blevin
,
M.
Jones
, and
B.
Chappell
, eds.,
NE South Australia
, pp.
43
45
. Record 2003/14.
24.
Baisch
,
S.
,
Voros
,
R.
,
Weidler
,
R.
, and
Wyborn
,
D.
, 2009,
“Investigation of Fault Mechanisms During Geothermal Reservoir Stimulation Experiments in the Cooper Basin,”
BSSA
,
99
(
1
), pp.
148
158
.
25.
Xu
,
C.
,
Dowd
,
P. A.
, and
Wyborn
,
D.
, 2010,
“Optimised Fracture Network Model for Habanero Reservoir,”
Proceedings of the Australian Geothermal Energy Conference, pp.
98
103
,
Adelaide
,
South Australia
, Nov. 2010.
26.
Adler
,
P. M.
, and
Thovert
,
J. F.
, 1999,
Fracture and Fracture Networks
,
Kluwer Acadamic Publication
,
The Netherlands
.
27.
Xu
,
C.
, and
Dowd
,
P. A.
, 2010, “
A New Computer Code for Discrete Fracture Modelling
,”
Comput. Geosci.
,
36
(
3
), pp.
292
301
.
28.
Mohais
,
R.
, and
Bhatt
,
B.
, 2009, “
Heat Transfer of Coupled Fluid Flow Within a Channel With a Permeable Base
,”
ASME J. Heat Transfer
,
131
(
11
), p.
112601
.
29.
Sparrow
,
E. M.
,
Beavers
,
G. S.
, and
Hung
,
L. Y.
, 1971, “
Channel and Tube Flows With Surface Mass Transfer and Velocity Slip
,”
Phys. Fluids
,
14
(
7
), pp.
1312
1319
.
30.
Chellam
,
S.
,
Wiesner
,
M. R.
, and
Dawson
,
C.
, 1992, “
Slip at a Uniformly Porous Boundary: Effect on Fluid Flow and Mass Transfer
,”
J. Eng. Math.
,
26
, pp.
481
492
.
31.
Berman
,
A. S.
, 1953, “
Laminar Flow in Channels With Porous Walls
,”
J. Appl. Phys.
,
24
(
9
), pp.
1232
1235
.
32.
Terrill
,
R. M.
, 1965, “
Heat Transfer in Laminar Flow Between Parallel Porous Plates
,”
Int. J. Heat Mass Transfer
,
8
, pp.
1491
1497
.
33.
Fournier
,
C.
,
Michard
,
M.
, and
Bataille
,
F.
, 2007, “
Heat Transfer in a Laminar Channel Flow Generated by Injection Through Porous Walls
,”
Trans. ASME J. Fluids Eng.
,
129
, pp.
1048
1057
.
34.
Ferro
,
S.
, and
Gnavi
,
G.
, 2002, “
Effects of Temperature-Dependent Viscosity in Channels With Porous Walls
,”
Phys. Fluids
,
14
(
2
), pp.
839
849
.
35.
Rohsenow
,
W. M.
, and
Choi
,
H.
, 1961,
Heat, Mass and Momentum Transfer
,
Prentice-Hall
,
Englewood Cliffs, New Jersey
.
36.
Kolditz
,
O.
, and
Clauser
,
C.
, 1998, “
Numerical Simulation of Flow and Heat Transfer in Fractured Crystalline Rocks: Application to the Hot Dry Rock Site in Rosemanowes (U.K)
,”
Geothermics
,
27
(
1
), pp.
1
23
.
You do not currently have access to this content.