In the present work, a multi-objective optimization of heat exchanger thermal design in the framework of the entropy generation minimization is presented. The objectives are to minimize the dimensionless entropy generation rates related to the heat conduction under finite temperature difference and fluid friction under finite pressure drop. Constraints are specified by the admissible pressure drop and design standards. The genetic algorithm is employed to search the Pareto optimal set of the multi-objective optimization problem. It is found that the solutions in the Pareto optimal set are trade-off between the pumping power and heat exchanger effectiveness. In some sense, the optimal solution in the Pareto optimal set achieves the largest exchanger effectiveness by consuming the least pumping power under the design requirements and standards. In comparison with the single-objective optimization design, the multi-objective optimization design leads to the significant decrease in the pumping power for achieving the same heat exchanger effectiveness and presents more flexibility in the design process.

1.
Yilmaz
,
M.
,
Sara
,
O. N.
, and
Karsli
,
S.
, 2001, “
Performance Evaluation Criteria for Heat Exchangers Based on Second Law Analysis
,”
Int. J. Exergy
1742-8297,
1
(
4
), pp.
278
294
.
2.
Prigogine
,
I.
, 1967,
Introduction to Thermodynamics of Irreversible Processes
, 3rd ed.,
Wiley
,
New York
, pp.
76
77
.
3.
Bejan
,
A.
, 1982,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
New York
, pp.
118
134
.
4.
Bejan
,
A.
, 1996,
Entropy Generation Minimization
,
CRC
,
Boca Raton, FL
, pp.
47
112
.
5.
Shah
,
R. K.
, and
Skiepko
,
T.
, 2004, “
Entropy Generation Extrema and Their Relationship With Heat Exchanger Effectiveness—Number of Transfer Unit Behavior for Complex Flow Arrangements
,”
ASME J. Heat Transfer
0022-1481,
126
(
6
), pp.
994
1003
.
6.
Vargas
,
J.
,
Bejan
,
A.
, and
Siems
,
D. L.
, 2001, “
Integrative Thermodynamic Optimization of the Crossflow Heat Exchanger for an Aircraft Environmental Control System
,”
ASME J. Heat Transfer
0022-1481,
123
(
4
), pp.
760
770
.
7.
Oğulatu
,
U.
,
Doba
,
F.
, and
Yilmaz
,
T.
, 2000, “
Irreversibility Analysis of Cross Flow Heat Exchangers
,”
Energy Convers. Manage.
0196-8904,
411
, pp.
585
1599
.
8.
Mishra
,
M.
,
Das
,
P. K.
, and
Sarangi
,
S.
, 2009, “
Second Law Based Optimization of Crossflow Plate-Fin Heat Exchanger Design Using Genetic Algorithm
,”
Appl. Therm. Eng.
1359-4311,
29
(
14–15
), pp.
2983
2989
.
9.
Guo
,
J. F.
,
Cheng
,
L.
, and
Xu
,
M. T.
, 2009, “
Optimization Design of Shell-and-Tube Heat Exchanger by Entropy Generation Minimization and Genetic Algorithm
,”
Appl. Therm. Eng.
1359-4311,
29
(
14–15
), pp.
2954
2960
.
10.
Mohamed
,
H. A.
, 2006, “
Entropy Generation in Counter Flow Gas to Gas Heat Exchangers
,”
ASME J. Heat Transfer
0022-1481,
128
(
1
), pp.
87
93
.
11.
Bejan
,
A.
, 1977, “
The Concept of Irreversibility in Heat Exchanger Design: Counterflow Heat Exchanger for Gas-to-Gas Applications
,”
ASME J. Heat Transfer
0022-1481,
99
(
3
), pp.
374
380
.
12.
Bejan
,
A.
, 1980, “
Second Law Analysis in Heat Transfer
,”
Energy
0360-5442,
5
, pp.
720
732
.
13.
Hesselgreaves
,
J. E.
, 2000, “
Rationalisation of Second Law Analysis of Heat Exchangers
,”
Int. J. Heat Mass Transfer
0017-9310,
43
(
22
), pp.
4189
4204
.
14.
Ogiso
,
K.
, 2003, “
Duality of Heat Exchanger Performance in Balanced Counter-Flow Systems
,”
ASME J. Heat Transfer
0022-1481,
125
(
3
), pp.
530
533
.
15.
Witte
,
L. C.
, and
Shamsundar
,
N.
, 1983, “
A Thermodynamic Efficiency Concept for Heat Exchange Devices
,”
ASME J. Eng. Power
0022-0825,
105
, pp.
199
203
.
16.
London
,
A. L.
, and
Shah
,
R. K.
, 1981, “
Costs of Irreversibilities in Heat Exchanger Design
,”
Heat Transfer Eng.
0145-7632,
4
, pp.
59
73
.
17.
Shah
,
R. K.
, and
Sekulic
,
D. P.
, 2003,
Fundamentals of Heat Exchanger Design
,
Wiley
,
New York
.
18.
Kuppan
,
T.
, 2000,
Heat Exchanger Design Handbook
,
Marcel Dekker
,
New York
.
19.
Shi
,
M. Z.
, and
Wang
,
Z. Z.
, 1996,
Principia and Design of Heat Transfer Device
,
Southeast University Press
,
Nanjing, China
, in Chinese.
20.
Palen
,
J. W.
, 1986,
Heat Exchanger Sourcebook
,
Hemisphere
,
Washington, DC
.
21.
Caputo
,
A. C.
,
Pelagagge
,
P. M.
, and
Salini
,
P.
, 2008, “
Heat Exchanger Design Based on Economic Optimization
,”
Appl. Therm. Eng.
1359-4311,
28
(
10
), pp.
1151
1159
.
22.
Bejan
,
A.
, 1988,
Advanced Engineering Thermodynamics
,
Wiley
,
New York
.
23.
State Bureau of Quality and Technical Supervision
, 1999,
Tubular Heat Exchangers, GB151-1999
,
Standards Press of China
,
Beijing, China
, in Chinese.
24.
Babu
,
B. V.
, and
Munawar
,
S. A.
, 2007, “
Differential Evolution Strategies for Optimal Design of Shell-and-Tube Heat Exchangers
,”
Chem. Eng. Sci.
0009-2509,
62
, pp.
3720
3739
.
25.
Oh
,
Y. H.
,
Chung
,
T. K.
,
Kim
,
M. K.
, and
Jung
,
H. K.
, 1999, “
Optimal Design of Electric Machine Using Genetic Algorithms Coupled With Direct Method
,”
IEEE Trans. Magn.
0018-9464,
35
(
3
), pp.
1742
1745
.
26.
Mohammed
,
O. A.
, and
Uler
,
G. F.
, 1997, “
A Hybrid Technique for the Optimal Design of Electromagnetic Devices Using Direct Search and Genetic Algorithms
,”
IEEE Trans. Magn.
0018-9464,
33
(
2
), pp.
1931
1934
.
27.
Wang
,
Q. W.
,
Zhang
,
D. J.
, and
Xie
,
G. N.
, 2009, “
Experimental Study and Genetic-Algorithm-Based Correlation on Pressure Drop and Heat Transfer Performance of a Cross-Corrugated Primary Surface Heat Exchanger
,”
ASME J. Heat Transfer
0022-1481,
131
(
6
), p.
061802
.
28.
Fanni
,
A.
,
Marchesi
,
M.
,
Serri
,
A.
, and
Usai
,
M.
, 1997, “
A Greedy Genetic Algorithm for Continuous Variables Electromagnetic Optimization Problems
,”
IEEE Trans. Magn.
0018-9464,
33
(
2
), pp.
1900
1903
.
29.
Wang
,
Q. W.
,
Xie
,
G. N.
,
Peng
,
B. T.
, and
Zeng
,
M.
, 2007, “
Experimental Study and Genetic-Algorithm-Based Correlation on Shell-Side Heat Transfer and Flow Performance of Three Different Types of Shell-and-Tube Heat Exchangers
,”
ASME J. Heat Transfer
0022-1481,
129
(
9
), pp.
1277
1286
.
30.
Houck
,
C. R.
,
Joines
,
J. A.
, and
Kay
,
M. G.
, 1995, “
A Genetic Algorithm for Function Optimization: A MATLAB Implementation
,” North Carolina State University Technical Report No. NCSU-IE-TR-95-09.
31.
Selbaş
,
R.
,
Kızılkan
,
Ö.
, and
Reppich
,
M.
, 2006, “
A New Design Approach for Shell-and-Tube Heat Exchangers Using Genetic Algorithms From Economic Point of View
,”
Chem. Eng. Process.
0255-2701,
45
(
4
), pp.
268
275
.
32.
Xie
,
G. N.
,
Sunden
,
B.
, and
Wang
,
Q. W.
, 2008, “
Optimization of Compact Heat Exchangers by a Genetic Algorithm
,”
Appl. Therm. Eng.
1359-4311,
28
, pp.
895
906
.
33.
Raznjevic
,
K.
, 1995,
Handbook of Thermodynamic Tables
, 2nd ed.,
Begell House
,
New York
.
34.
Hilbert
,
R.
,
Janiga
,
G.
,
Baron
,
R.
, and
Thévenin
,
D.
, 2006, “
Multi-Objective Shape Optimization of a Heat Exchanger Using Parallel Genetic Algorithms
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
2567
2577
.
35.
Barakat
,
T. M.
,
Fraga
,
E. S.
, and
Sørensen
,
E.
, 2008, “
Multi-Objective Optimisation of Batch Separation Process
,”
Chem. Eng. Process.
0255-2701,
47
(
12
), pp.
2303
2314
.
36.
Deb
,
K.
, 2001,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley
,
Chichester, UK
.
37.
Copiello
,
D.
, and
Fabbri
,
G.
, 2009, “
Multi-Objective Genetic Optimization of the Heat Transfer From Longitudinal Wavy Fins
,”
Int. J. Heat Mass Transfer
0017-9310,
52
(
5–6
), pp.
1167
1176
.
38.
Matlab Company
, 2009, “
MATLAB User Guide: Version 7.9.0
.”
39.
Deb
,
K.
, and
Goel
,
T.
, 2001, “
Controlled Elitist Non-Dominated Sorting Genetic Algorithms for Better Convergence
,”
Lect. Notes Comput. Sci.
0302-9743,
1993
, pp.
67
81
.
You do not currently have access to this content.