The transient hot wire experimental method for estimating the thermal conductivity of fluids and solids is well established as the most accurate, reliable, and robust technique. It essentially relies on a simple analytical formula derived from the solution of the heat conduction from a line heat source embedded in the target medium. This simple and elegant analytical formulation was derived for uniform and homogeneous fluids or solids. Its extension to two-phase or composite systems, while in practical application, does not have any theoretical basis, and it is by no means obvious that the latter may be applied without corrections to such heterogeneous systems. When it is actually applied as for single-phase systems, it is clearly incorrect. This paper presents preliminary results at the leading order (in the sense of an expansion of the solution in powers of time, applicable to short time scales, consistent with the validity of the transient hot wire method), which render the transient hot wire method to two-phase and composite systems. While these leading order approximations extend the applicability of the same analytical formula to two-phase systems, they also produce additional conditions that need to be fulfilled for such an application to provide reliable experimental results.

1.
Hammerschmidt
,
U.
, and
Sabuga
,
W.
, 2000, “
Transient Hot Wire (THW) Method: Uncertainty Assessment
,”
Int. J. Thermophys.
0195-928X,
21
, pp.
1255
1278
.
2.
De Groot
,
J. J.
,
Kestin
,
J.
, and
Sookiazian
,
H.
, 1974, “
Instrument to Measure the Thermal Conductivity of Gases
,”
Physica (Amsterdam)
0031-8914,
75
, pp.
454
482
.
3.
Healy
,
J. J.
,
de Groot
,
J. J.
, and
Kestin
,
J.
, 1976, “
The Theory of the Transient Hot-Wire Method for Measuring Thermal Conductivity
,”
Physica C
0921-4534,
82
, pp.
392
408
.
4.
Kestin
,
J.
, and
Wakeham
,
W. A.
, 1978, “
A Contribution to the Theory of the Transient Hot-Wire Technique for Thermal Conductivity Measurements
,”
Physica A
0378-4371,
92
, pp.
102
116
.
5.
Assael
,
M. J.
,
Dix
,
M.
,
Gialou
,
K.
,
Vozar
,
L.
, and
Wakeham
,
W. A.
, 2002, “
Application of the Transient Hot-Wire Technique to the Measurement of the Thermal Conductivity of Solids
,”
Int. J. Thermophys.
0195-928X,
23
, pp.
615
633
.
6.
Assael
,
M. J.
, and
Gialou
,
K.
, 2003, “
A Transient Hot Wire Instrument for the Measurement of the Thermal Conductivity of Solids up to 590 K
,”
Int. J. Thermophys.
0195-928X,
24
, pp.
667
674
.
7.
Nagasaka
,
Y.
, and
Nagashima
,
A.
, 1981, “
Absolute Measurement of the Thermal Conductivity of Electrically Conducting Liquids by the Transient Hot-Wire Method
,”
J. Phys. E
0022-3735,
14
, pp.
1435
1440
.
8.
Assael
,
M. J.
,
Chen
,
C. -F.
,
Metaxa
,
I.
, and
Wakeham
,
W. A.
, 2004, “
Thermal Conductivity of Suspensions of Carbon Nanotubes in Water
,”
Int. J. Thermophys.
0195-928X,
25
, pp.
971
985
.
9.
Assael
,
M. J.
, and
Gialou
,
K.
, 2003, “
Measurement of Thermal Conductivity of Stainless Steel AISI 304L up to 590 K
,”
Int. J. Thermophys.
0195-928X,
24
, pp.
1145
1153
.
10.
Assael
,
M. J.
,
Gialou
,
K.
,
Kakosimos
,
K.
, and
Metaxa
,
I.
, 2004, “
Thermal Conductivity of Reference Solid Materials
,”
Int. J. Thermophys.
0195-928X,
25
, pp.
397
408
.
11.
Assael
,
M. J.
,
Antoniadis
,
K. D.
,
Kakosimos
,
K.
, and
Metaxa
,
I. N.
, 2008, “
An Improved Application of the Transient Hot-Wire Technique for the Absolute Accurate Measurement of the Thermal Conductivity of Pyroceram 9606 Up to 420 K
,”
Int. J. Thermophys.
0195-928X,
29
, pp.
445
456
.
12.
de Groot
,
J. J.
,
Kestin
,
J.
,
Sookiazian
,
H.
, and
Wakeham
,
W. A.
, 1978, “
The Thermal Conductivity of Four Monatomic Gases as a Function of Density Near Room Temperature
,”
Physica A
0378-4371,
92
, pp.
117
144
.
13.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
78
, pp.
718
720
.
14.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
, 2001, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
0003-6951,
79
, pp.
2252
2254
.
15.
Coquard
,
R.
, and
Bailis
,
D.
, 2006, “
Modeling of Heat Transfer in Low-Density EPS Foams
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
538
549
.
16.
Coquard
,
R.
, and
Bailis
,
D.
, 2006, “
Experimental and Theoretical Study of the Hot-Wire Method Applied to Low-Density Thermal Insulators
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
4511
4524
.
17.
Vadasz
,
P.
, 2006, “
Heat Conduction in Nanofluid Suspensions
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
465
477
.
18.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1946,
Conduction of Heat in Solids
, 2nd ed.,
Oxford University Press
,
New York
.
19.
Özisik
,
M. N.
, 1993,
Heat Conduction
, 2nd ed.,
Wiley
,
New York
.
20.
Bentley
,
J. P.
, 1984, “
Temperature Sensor Characteristics and Measurement System Design
,”
J. Phys. E
0022-3735,
17
, pp.
430
439
.
21.
Martinsons
,
C.
,
Levick
,
A.
, and
Edwards
,
G.
, 2001, “
Precise Measurements of Thermal Diffusivity by Photothermal Radiometry for Semi-Infinite Targets Using Accurately Determined Boundary Conditions
,”
Anal. Sci.
0910-6340,
17
, pp.
114
117
.
22.
Lee
,
S.
,
Choi
,
S. U.-S.
,
Li
,
S.
, and
Eastman
,
J. A.
, 1999, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
280
289
.
23.
Xuan
,
Y.
, and
Li
,
Q.
, 2000, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Flow Fluid
,
21
, pp.
58
64
.
24.
Maxwell
,
J. C.
, 1891,
A Treatise on Electricity and Magnetism
, 3rd ed.,
Clarendon
,
Oxford
, pp.
435
441
.
25.
Batchelor
,
G. K.
, 1972, “
Sedimentation in a Dilute Dispersion of Spheres
,”
J. Fluid Mech.
0022-1120,
52
, pp.
245
268
.
26.
Batchelor
,
G. K.
, and
Green
,
J. T.
, 1972, “
The Hydrodynamic Interaction of Two Small Freely-Moving Spheres in a Linear Flow Field
,”
J. Fluid Mech.
0022-1120,
56
, pp.
375
400
.
27.
Jeffrey
,
D. J.
, 1973, “
Conduction Through a Random Suspension of Spheres
,”
Proc. R. Soc. London, Ser. A
0950-1207,
335
, pp.
355
367
.
28.
Davis
,
R. H.
, 1986, “
The Effective Thermal Conductivity of a Composite Material With Spherical Inclusions
,”
Int. J. Thermophys.
0195-928X,
7
, pp.
609
620
.
29.
Lu
,
S.
, and
Lin
,
H.
, 1996, “
Effective Conductivity of Composites Containing Aligned Spheroidal Inclusions of Finite Conductivity
,”
J. Appl. Phys.
0021-8979,
79
, pp.
6761
6769
.
30.
Bonnecaze
,
R. T.
, and
Brady
,
J. F.
, 1991, “
The Effective Conductivity of Random Suspensions of Spherical Particles
,”
Proc. R. Soc. London, Ser. A
0950-1207,
432
, pp.
445
465
.
31.
Bonnecaze
,
R. T.
, and
Brady
,
J. F.
, 1990, “
A Method for Determining the Effective Conductivity of Dispersions of Particles
,”
Proc. R. Soc. London, Ser. A
0950-1207,
430
, pp.
285
313
.
32.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
, 1962, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
I&EC Fundamentals
,
1
, pp.
187
191
. 0002-7820
33.
Vadasz
,
P.
, 2007, “
Rendering the Transient Hot Wire Experimental Method to Dual-Phase Applications
,”
Proceedings of the Fifth International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT), Sun City, South Africa
, Paper No. HEFAT2007-K2.
34.
Vadasz
,
P.
, 2007, “
Rendering the Transient Hot Wire Experimental Method to Dual-Phase Applications
,”
ASME
Paper No. IMECE2007-41071.
35.
Vadasz
,
P.
, 2007, “
Rendering the Transient Hot Wire Experimental Method to Porous Media Applications
,”
Proceedings of the Second International Conference on Porous Media and Its Applications in Science Engineering and Indust
ry, Kauai, HI.
36.
Quintard
,
M.
, and
Whitaker
,
S.
, 1995, “
Local Thermal Equilibrium for Transient Heat Conduction: Theory and Comparison With Numerical Experiments
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
2779
2796
.
37.
Alazmi
,
B.
, and
Vafai
,
K.
, 2002, “
Constant Wall Heat Flux Boundary Conditions in Porous Media Under Local Thermal Non-Equilibrium Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3071
3087
.
38.
Amiri
,
A.
, and
Vafai
,
K.
, 1994, “
Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
939
954
.
39.
Wakao
,
N.
,
Kaguei
,
S.
, and
Funazkri
,
T.
, 1979, “
Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients in Packed Beds
,”
Chem. Eng. Sci.
0009-2509,
34
, pp.
325
336
.
40.
Wakao
,
N.
, and
Kaguei
,
S.
, 1982, “
Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients in Packed Beds
,”
Heat and Mass Transfer in Packed Beds
,
Gordon and Breach
,
New York
.
41.
Kuwahara
,
F.
,
Shirota
,
M.
, and
Nakayama
,
A.
, 2001, “
A Numerical Study of Interfacial Convective Heat Transfer Coefficient in Two-Energy Equation Model for Convection in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1153
1159
.
You do not currently have access to this content.