Molecular dynamics simulations are performed to estimate acoustical and optical phonon relaxation times, dispersion relations, group velocities, and specific heat of silicon needed to solve the Boltzmann transport equation (BTE) at 300 K and 1000 K. The relaxation times are calculated from the temporal decay of the autocorrelation function of the fluctuation of total energy of each normal mode in the 100 family of directions, where the total energy of each mode is obtained from the normal mode decomposition of the motion of the silicon atoms over a period of time. Additionally, silicon dispersion relations are directly determined from the equipartition theorem obtained from the normal mode decomposition. The impact of the anharmonic nature of the potential energy function on the thermal expansion of the crystal is determined by computing the lattice parameter at the cited temperatures using a NPT (i.e., constant number of atoms, pressure, and temperature) ensemble, and are compared with experimental values reported in the literature and with those computed analytically using the quasiharmonic approximation. The dependence of the relaxation times with respect to the frequency is identified with two functions that follow the functional form of the relaxation time expressions reported in the literature. From these functions a simplified version of relaxation times for each normal mode is extracted. Properties, such as group and phase velocities, thermal conductivity, and mean free path, needed to further develop a methodology for the thermal analysis of electronic devices (i.e., from nano- to macroscales) are determined once the relaxation times and dispersion relations are obtained. The thermal properties are validated by comparing the BTE-based thermal conductivity against the predictions obtained from the Green–Kubo method. It is found that the relaxation times closely resemble the ones obtained from perturbation theory at high temperatures; the contribution to the thermal conductivity of the transverse acoustic, longitudinal acoustic, and longitudinal optical modes being approximately 30%, 60%, and 10%, respectively, and the contribution of the transverse optical mode negligible.

1.
Ziman
,
J.
, 1960,
Electrons and Phonons: The Theory of Transport Phenomena in Solids
(
The International Series of Monographs on Physics
),
Clarendon
,
New York
.
2.
Holland
,
M. G.
, 1964, “
Phonon Scattering in Semiconductors From Thermal Conductivity Studies
,”
Phys. Rev.
0096-8250,
134
(
2A
), pp.
A471
A480
.
3.
Liu
,
W.
, and
Asheghi
,
M.
, 2005, “
Thermal Conduction in Ultrathin Pure and Doped Single-Crystal Silicon Layers at High Temperatures
,”
J. Appl. Phys.
0021-8979,
98
, p.
123523
.
4.
Liu
,
W.
,
Etessm-Yazdani
,
K.
,
Hussin
,
R.
, and
Asheghi
,
M.
, 2006, “
Modeling and Data for Thermal Conductivity of Ultrathin Single-Crystal SOI Layers at High Temperature
,”
IEEE Trans. Electron Devices
0018-9383,
53
(
8
), pp.
1868
1876
.
5.
Sood
,
K. C.
, and
Roy
,
M. K.
, 1993, “
Longitudinal Phonons and High-Temperature Heat Conduction in Germanium
,”
J. Phys.: Condens. Matter
0953-8984,
5
, pp.
301
312
.
6.
Tiwari
,
M. D.
, and
Agrawal
,
B. K.
, 1971, “
Analysis of the Lattice Thermal Conductivity of Germanium
,”
Phys. Rev. B
0163-1829,
4
(
10
), pp.
3527
3532
.
7.
Chung
,
J. D.
,
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
, 2004, “
Role of Phonon Dispersion in Lattice Thermal Conductivity Modeling
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
376
380
.
8.
McGaughey
,
A. J.
, and
Kaviany
,
M.
, 2004, “
Quantitative Validation of the Boltzmann Transport Equation Phonon Thermal Conductivity Model Under the Single-Mode Relaxation Time Approximation
,”
Phys. Rev. B
0163-1829,
69
(
9
), p.
094303
.
9.
Escobar
,
R. A.
,
Ghai
,
S. S.
,
Jhon
,
M. S.
, and
Amon
,
C. H.
, 2006, “
Multi-Length and Time Scale Thermal Transport Using the Lattice Boltzmann Method With Applications to Electronics Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
97
107
.
10.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2006, “
Boltzmann Transport Equation-Based Thermal Modeling Approaches for Hotspots in Microelectronics
,”
Int. J. Heat Mass Transfer
0017-9310,
42
(
6
), pp.
478
491
.
11.
Pop
,
E.
,
Sinha
,
S.
, and
Goodson
,
K.
, 2006, “
Heat Generation and Transport in Nanometer-Scale Transistors
,”
Proc. IEEE
0018-9219,
94
(
8
), pp.
1587
1601
.
12.
Rowlette
,
J.
, and
Goodson
,
K.
, 2008, “
Fully Coupled Nonequilibrium Electron-Phonon Transport in Nanometer-Scale Silicon FETs
,”
IEEE Trans. Electron Devices
0018-9383,
55
(
1
), pp.
220
232
.
13.
Sinha
,
S.
,
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Goodson
,
K. E.
, 2005, “
Scattering of g-Process Longitudinal Optical Phonons at Hotspots in Silicon
,”
J. Appl. Phys.
0021-8979,
97
(
2
), p.
023702
.
14.
Pop
,
E.
,
Dutton
,
R. W.
, and
Goodson
,
K. E.
, 2005, “
Monte Carlo Simulation of Joule Heating in Bulk and Strained Silicon
,”
Appl. Phys. Lett.
0003-6951,
86
(
8
), p.
082101
.
15.
Ladd
,
A.
,
Moran
,
B.
, and
Hoover
,
W. G.
, 1986, “
Lattice Thermal Conductivity: A Comparison of Molecular Dynamics and Anharmonic Lattice Dynamics
,”
Phys. Rev. B
0163-1829,
34
, pp.
5058
5064
.
16.
Sun
,
L.
, and
Murthy
,
J. Y.
, 2005, “
Molecular Dynamics Simulation of Phonon Transport in EDIP Silicon
,” pp.
1
6
,
ASME
Paper No. HT2005-72200.
17.
Goicochea
,
J. V.
,
Madrid
,
M.
, and
Amon
,
C.
, 2008, “
Hierarchical Modeling of Heat Transfer in Silicon-Based Electronic Devices
,”
Thermal and Thermomechanical Phenomena in Electronic Systems, ITHERM
, Orlando, FL, pp.
1006
1017
.
18.
Stillinger
,
F. H.
, and
Weber
,
T. A.
, 1985, “
Computer Simulation of Local Order in Condensed Phases of Silicon
,”
Phys. Rev. B
0163-1829,
31
(
8
), pp.
5262
5271
.
19.
Tersoff
,
J.
, 1988, “
Empirical Interatomic Potential for Silicon With Improved Elastic Properties
,”
Phys. Rev. B
0163-1829,
38
, pp.
9902
9905
.
20.
Bazant
,
M. Z.
,
Kaxiras
,
E.
, and
Justo
,
J. F.
, 1997, “
Environment-Dependent Interatomic Potential for Bulk Silicon
,”
Phys. Rev. B
0163-1829,
56
(
14
), pp.
8542
8552
.
21.
Herring
,
C.
, 1954, “
Role of Low-Energy Phonons in Thermal Conduction
,”
Phys. Rev.
0096-8250,
95
(
4
), pp.
954
965
.
22.
Klemens
,
P. G.
, 1951, “
The Thermal Conductivity of Dielectric Solids at Low Temperatures
,”
Proc. R. Soc. London, Ser. A
0950-1207,
208
(
1092
), pp.
108
133
.
23.
Carruthers
,
P.
, 1961, “
Theory of Thermal Conductivity of Solids at Low Temperatures
,”
Rev. Mod. Phys.
0034-6861,
33
(
1
), pp.
92
138
.
24.
Klemens
,
P. G.
, 1966, “
Anharmonic Decay of Optical Phonons
,”
Phys. Rev.
0096-8250,
148
(
2
), pp.
845
848
.
25.
Ecsedy
,
D. J.
, and
Klemens
,
P. G.
, 1977, “
Thermal Resistivity of Dielectric Crystals Due to Four-Phonon Processes and Optical Modes
,”
Phys. Rev. B
0163-1829,
15
(
12
), pp.
5957
5962
.
26.
Han
,
Y. -J.
, and
Klemens
,
P. G.
, 1993, “
Anharmonic Thermal Resistivity of Dielectric Crystals at Low Temperatures
,”
Phys. Rev. B
0163-1829,
48
, pp.
6033
6042
.
27.
Dove
,
M. T.
, 1993,
Introduction to Lattice Dynamics
(
Cambridge Topics in Mineral Physics and Chemistry
),
Cambridge University Press
,
New York
.
28.
Gomes
,
C.
, 2005, “
Molecular Dynamics Study of Silicon Thin Films Thermal Conductivity
,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.
29.
Press
,
W. H.
,
Vetterling
,
W. T.
,
Teukolsky
,
S. A.
, and
Flannery
,
B. P.
, 1992,
Numerical Recipes in FORTRAN: The Art of Scientific Computing
,
Cambridge University Press
,
New York
.
30.
Maruyama
,
S.
, 2003, “
A Molecular Dynamics Simulation of Heat Conduction of a Finite Length Single-Walled Carbon Nanotube
,”
Nanoscale and Microscale Thermophysical Engineering
1556-7265,
7
(
1
), pp.
41
50
.
31.
Broughton
,
J. Q.
, and
Li
,
X. P.
, 1987, “
Phase Diagram of Silicon by Molecular Dynamics
,”
Phys. Rev. B
0163-1829,
35
(
17
), pp.
9120
9127
.
32.
Herrero
,
C. P.
, 2001, “
Quantum Atomistic Simulations of Silicon and Germanium
,”
J. Mater. Res.
0884-2914,
16
(
9
), pp.
2505
2512
.
33.
Zhao
,
H.
,
Tang
,
Z.
,
Li
,
G.
, and
Aluru
,
N. R.
, 2006, “
Quasiharmonic Models for the Calculation of Thermodynamic Properties of Crystalline Silicon Under Strain
,”
J. Appl. Phys.
0021-8979,
99
(
6
), p.
064314
.
34.
Nosé
,
S.
, 1984, “
A Unified Formulation of the Constant Temperature Molecular Dynamics Methods
,”
J. Chem. Phys.
0021-9606,
81
(
1
), pp.
511
519
.
35.
Allen
,
M. P.
, and
Tildesley
,
D. J.
, 1987,
Computer Simulation of Liquids
,
Clarendon
,
Oxford, UK
.
36.
Pearson
,
E. M.
,
Halicioglu
,
T.
, and
Tiller
,
W. A.
, 1985, “
Laplace-Transform Technique for Deriving Thermodynamics Equations From the Classical Microcanonical Ensemble
,”
Phys. Rev. A
1050-2947,
32
(
5
), pp.
3030
3039
.
37.
McGaughey
,
A. J. H.
, 2004, “
Phonon Transport in Molecular Dynamics Simulations: Formulation and Thermal Conductivity Prediction
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
38.
Holland
,
M. G.
, 1963, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
0096-8250,
132
(
6
), pp.
2461
2471
.
39.
Henry
,
A. S.
, and
Chen
,
G.
, 2008, “
Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics
,”
J. Comput. Theor. Nanosci.
1546-1955,
5
(
2
), pp.
141
152
.
40.
Klemens
,
P. G.
, 1969, “
Theory of Thermal Conductivity of Solids
,”
Thermal Conductivity
,
Academic
,
London
.
41.
Ju
,
Y. S.
, and
Goodson
,
K. E.
, 1999, “
Phonon Scattering in Silicon Thin Films With Thickness of Order 100 nm
,”
Appl. Phys. Lett.
0003-6951,
74
(
20
), pp.
3005
3007
.
42.
Hamilton
,
R. A. H.
, and
Parrott
,
J. E.
, 1969, “
Variational Calculation of the Thermal Conductivity of Germanium
,”
Phys. Rev.
0096-8250,
178
(
3
), pp.
1284
1292
.
43.
Broido
,
D. A.
,
Malorny
,
M.
,
Birner
,
G.
,
Mingo
,
N.
, and
Stewart
,
D. A.
, 2007, “
Intrinsic Lattice Thermal Conductivity of Semiconductors From First Principles
,”
Appl. Phys. Lett.
0003-6951,
91
(
231922
), pp.
1
3
.
44.
Gomes
,
C.
,
Madrid
,
M.
,
Goicochea
,
J. V.
, and
Amon
,
C.
, 2006, “
In-Plane and Out-of-Plane Thermal Conductivity of Silicon Thin Films Predicted by Molecular Dynamics
,”
ASME J. Heat Transfer
0022-1481,
128
(
11
), pp.
1114
1121
.
45.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
, 2002, “
Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity
,”
Phys. Rev. B
0163-1829,
65
, p.
144306
.
46.
Sun
,
L.
, and
Murthy
,
J. Y.
, 2006, “
Domain Size Effects in Molecular Dynamics Simulation of Phonon Transport in Silicon
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
171919
.
You do not currently have access to this content.