We propose in this work a structure of semiconductor thin films combined with a one-dimensional metallic grating, which allows for selective improvement of thermal radiative absorptivity (also emissivity) of the structure. Both shallow and deep gratings are considered in this work. Our numerical results obtained with a 2D rigorous coupled-wave analysis algorithm demonstrate that the proposed structure exhibits enhanced spectral absorptivity for photon energy slightly above the gap energy of the semiconductor (silicon in this work). Furthermore, the selectively improved absorptivity can be obtained in a wide range of incidence angles. As such, much smaller thickness of the semiconductor layer is required to absorb the same amount of high energy photons than in a conventional Si-based photovoltaic device. In addition, absorptivity for low energy photons in the new structure is lower due to the smaller semiconductor layer thickness. Therefore, the new structure may have potential applications in energy conversion devices.

1.
Zhang
,
Z. M.
, 2007,
Nano/Microscale Heat Transfer
,
McGraw-Hill
,
New York
.
2.
Lin
,
S. Y.
,
Fleming
,
J. G.
,
Chow
,
E.
,
Bur
,
J.
,
Choi
,
K. K.
, and
Goldberg
,
A.
, 2000, “
Enhancement and Suppression of Thermal Emission by a Three-Dimensional Photonic Crystal
,”
Phys. Rev. B
0163-1829,
62
, pp.
R2243
R2246
.
3.
Lin
,
S. Y.
,
Fleming
,
J. G.
, and
El-Kady
,
I.
, 2003, “
Highly Efficient Light Emission at λ=1.5μm by a Three-Dimensional Tungsten Photonic Crystal
,”
Opt. Lett.
0146-9592,
28
, pp.
1683
1685
.
4.
Lin
,
S. Y.
,
Moreno
,
J.
, and
Fleming
,
J. G.
, 2003, “
Three-Dimensional Photonic-Crystal Emitter for Thermal Photovoltaic Power Generation
,”
Appl. Phys. Lett.
0003-6951,
83
, pp.
380
382
.
5.
Narayanaswamy
,
A.
, and
Chen
,
G.
, 2004, “
Thermal Emission Control With One-Dimensional Metallodielectric Photonic Crystals
,”
Phys. Rev. B
0163-1829,
70
, p.
125101
.
6.
Lee
,
B. J.
, and
Zhang
,
Z. M.
, 2007, “
Coherent Thermal Emission From Modified Periodic Multilayer Structures
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
17
26
.
7.
Hesketh
,
P. J.
,
Zemel
,
J. N.
, and
Gebhart
,
B.
, 1986, “
Organ Pipe Radiant Modes of Periodic Micromachined Silicon Surfaces
,”
Nature (London)
0028-0836,
324
, pp.
549
551
.
8.
Kreiter
,
M.
,
Oster
,
J.
,
Sambles
,
R.
,
Herminghaus
,
S.
,
Mittler-Neher
,
S.
, and
Knoll
,
W.
, 1999, “
Thermally Induced Emission of Light From a Metallic Diffraction Grating Mediated by Surface Plasmons
,”
Opt. Commun.
0030-4018,
168
, pp.
117
122
.
9.
Greffet
,
J. -J.
,
Carminati
,
R.
,
Joulain
,
K.
,
Mulet
,
J. P.
,
Mainguy
,
S. P.
, and
Chen
,
Y.
, 2002, “
Coherent Emission of Light by Thermal Sources
,”
Nature (London)
0028-0836,
416
, pp.
61
64
.
10.
Marquier
,
F.
,
Joulain
,
K.
,
Mulet
,
J. P.
,
Carminati
,
R.
, and
Greffet
,
J. -J.
, 2004, “
Engineering Infrared Emission Properties of Silicon in the Near Field and the Far Field
,”
Opt. Commun.
0030-4018,
237
, pp.
379
388
.
11.
Dahan
,
N.
,
Niv
,
A.
,
Biener
,
G.
,
Kleiner
,
V.
, and
Hasman
,
E.
, 2005, “
Space-Variant Polarization Manipulation of a Thermal Emission by a SiO2 Subwavelength Grating Supporting Surface Phonon-Polaritons
,”
Appl. Phys. Lett.
0003-6951,
86
, p.
191102
.
12.
Marquier
,
F.
,
Joulain
,
K.
,
Mulet
,
J. P.
,
Carminati
,
R.
,
Greffet
,
J. -J.
, and
Chen
,
Y.
, 2004, “
Coherent Spontaneous Emission of Light by Thermal Sources
,”
Phys. Rev. B
0163-1829,
69
, p.
155412
.
13.
Sai
,
H.
,
Kanamori
,
Y.
, and
Yugami
,
H.
, 2005, “
Tuning of the Thermal Radiation Spectrum in the Near-Infrared Region by Metallic Surface Microstructures
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
S243
S249
.
14.
Chen
,
Y. -B.
, and
Zhang
,
Z. M.
, 2007, “
Design of Tungsten Complex Gratings for Thermophotovoltaic Radiators
,”
Opt. Commun.
0030-4018,
269
, pp.
411
417
.
15.
Basu
,
S.
,
Chen
,
Y. -B.
, and
Zhang
,
Z. M.
, 2007, “
Microscale Radiation in Thermophotovoltaic Devices—A Review
,”
Int. J. Energy Res.
0363-907X,
31
, pp.
689
716
.
16.
Marquier
,
F.
,
Laroche
,
M.
,
Carminati
,
R.
, and
Greffet
,
J. -J.
, 2007, “
Anisotropic Polarized Emission of a Doped Silicon Lamellar Grating
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
11
16
.
17.
Chen
,
Y. -B.
,
Zhang
,
Z. M.
, and
Timans
,
P. J.
, 2007, “
Radiative Properties of Patterned Wafers With Nanoscale Linewidth
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
79
90
.
18.
Heavens
,
O. S.
, 1965,
Optical Properties of Thin Solid Films
,
Dover
,
New York
.
19.
Fu
,
C. J.
,
Zhang
,
Z. M.
, and
Tanner
,
D. B.
, 2005, “
Energy Transmission by Photon Tunneling in Multilayer Structures Including Negative Index Materials
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
1046
1052
.
20.
Chateau
,
N.
, and
Hugonin
,
J. -P.
, 1994, “
Algorithm for the Rigorous Coupled-Wave Analysis of Grating Diffraction
,”
J. Opt. Soc. Am. A
0740-3232,
11
, pp.
1321
1331
.
21.
Moharam
,
M. G.
,
Grann
,
E. B.
,
Pommet
,
D. A.
, and
Gaylord
,
T. K.
, 1995, “
Formulation for Stable and Efficient Implementation of the Rigorous Coupled-Wave Analysis of Binary Grating
,”
J. Opt. Soc. Am. A
0740-3232,
12
, pp.
1068
1076
.
22.
Moharam
,
M. G.
,
Pommet
,
D. A.
,
Grann
,
E. B.
, and
Gaylord
,
T. K.
, 1995, “
Stable Implementation of the Rigorous Coupled-Wave Analysis for Surface-Relief Gratings: Enhanced Transmittance Matrix Approach
,”
J. Opt. Soc. Am. A
0740-3232,
12
, pp.
1077
1086
.
23.
Li
,
L. F.
, 1996, “
Formulation and Comparison of Two Recursive Matrix Algorithms for Modeling Layered Diffraction Gratings
,”
J. Opt. Soc. Am. A
0740-3232,
13
, pp.
1024
1035
.
24.
E. D.
Palik
, ed., 1998,
Handbook of Optical Constants of Solids
,
Academic
,
San Diego, CA
.
25.
Nelson
,
J.
, 2003,
The Physics of Solar Cells
,
Imperial College Press
,
UK
.
You do not currently have access to this content.