Developing turbulent forced convection flow in a two-dimensional duct is simulated for Reynolds numbers ranging from 4560 to 12,000. Simultaneously developing velocity and temperature distributions are reported by treating the inlet flow as isothermal with uniform velocity profile. The walls are supplied with uniform heat flux. Distributions of the streamwise and the transverse velocity components exhibit a maximum near the walls, but not at the center of the duct, in the developing region of the flow. The friction coefficient and the Nusselt number do not reach the fully developed values monotonously, and a minimum in their distributions appears in the developing region. Some results are compared with the available data, and very favorable comparisons are obtained.

1.
Hussain
,
A. K. M. F
, and
Reynolds
,
W. C.
, 1975, “
Measurements in Fully Developed Turbulent Channel Flow
,”
ASME J. Fluids Eng.
0098-2202,
97
(
4
), pp.
568
580
.
2.
Wei
,
T.
, and
Willmarth
,
W. W.
, 1989, “
Reynolds-Number Effects on the Structure of a Turbulent Channel Flow
,”
J. Fluid Mech.
0022-1120,
204
, pp.
57
95
.
3.
Johansson
,
A. V.
, and
Alfredsson
,
P. H.
, 1982, “
On the Structure of Turbulent Channel Flow
,”
J. Fluid Mech.
0022-1120,
122
, pp.
295
314
.
4.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
, 1987, “
Turbulence Statistics in Fully Developed Turbulent Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
0022-1120,
177
, pp.
133
166
.
5.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
, 1999, “
Direct Numerical Simulation of a Fully Developed Turbulent Channel Flow Up to Reτ=590
,”
Phys. Fluids
1070-6631,
11
(
4
), pp.
943
945
.
6.
Abe
,
H.
,
Kawamura
,
H.
, and
Matsuo
,
Y.
, 2000, “
Direct Numerical Simulation of a Fully Developed Turbulent Channel Flow With Respect to the Reynolds Number Dependence
,”
ASME J. Fluids Eng.
0098-2202,
123
(
2
), pp.
382
393
.
7.
Kim
,
J.
, and
Moin
,
P.
, 1989, “
Transport of Passive Scalars in a Turbulent Channel Flow
,”
Turbulent Shear Flow VI
,
J.-C.
Andre
,
J.
Cousteix
,
F.
Durst
,
B. E.
Launder
,
F. W.
Schmidt
, and
J. H.
Whitelaw
, eds.,
Springer
,
Berlin
, pp.
85
96
.
8.
Kasagi
,
N.
,
Tomita
,
Y.
, and
Kuroda
,
A.
, 1992, “
Direct Numerical Simulation of Passive Scalar Field in a Turbulent Channel Flow
,”
ASME J. Heat Transfer
0022-1481,
114
(
3
), pp.
598
606
.
9.
Debusschere
,
B.
, and
Rutland
,
C. J.
, 2004, “
Turbulent Scalar Transport Mechanisms in Plane Channel and Couette Flows
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
8&9
), pp.
1771
1781
.
10.
Abe
,
K.
,
Kondoh
,
T.
, and
Nagano
,
Y.
, 1994, “
A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flows—I. Flow Field Calculations
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
1
), pp.
139
154
.
11.
Abe
,
K.
,
Kondoh
,
T.
, and
Nagano
,
Y.
, 1995, “
A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flows—II. Thermal Field Calculations
,”
Int. J. Heat Mass Transfer
0017-9310,
38
(
8
), pp.
1467
1481
.
12.
Chen
,
Y. T.
,
Nie
,
J. H.
,
Armaly
,
B. F.
, and
Hsieh
,
H. T.
, 2006, “
Turbulent Separated Convection Flow Adjacent to Backward-Facing Step—Effects of Step Height
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
19&20
), pp.
3670
3680
.
13.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
14.
Vogel
,
J. C.
, and
Eaton
,
J. K.
, 1985, “
Combined Heat Transfer and Fluid Dynamic Measurements Downstream of a Backward-Facing Step
,”
ASME J. Heat Transfer
0022-1481,
107
(
4
), pp.
922
929
.
15.
Kays
,
W.
, and
Crawford
,
M. E.
, 1980,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
16.
Yu
,
B.
, and
Ozoe
,
H.
, 2001, “
Non-Parabolic Flow Pattern at the Entrance Region in a Circular Tube With a Uniform Inlet Velocity
,”
Numer. Heat Transfer, Part A
1040-7782,
39
(
8
), pp.
857
862
.
You do not currently have access to this content.