Solid/liquid phase change occurring in a rectangular container with and without metal foams subjected to periodic pulsed heating is investigated. Natural convection in the melt is considered. Volume-averaged mass and momentum equations are employed, with the Brinkman–Forchheimer extension to Darcy’s law used to model the porous resistance. A local thermal nonequilibrium model, assuming equilibrium melting at the pore scale, is employed for energy transport through the metal foams and the interstitial phase change material (PCM). Separate volume-averaged energy equations for the foam and the PCM are written and are closed using a heat transfer coefficient. The enthalpy method is employed to account for phase change. The governing equations for the PCM without foam are derived from the porous medium equations. The governing equations are solved implicitly using a finite volume method on a fixed grid. The coupled effect of pulse width and natural convection in the melt is found to have a profound effect on the overall melting behavior. The influence of pulse width, Stefan number, and Rayleigh number on the temporal evolution of the melt front location and the melting rate for both the cases with and without metal foams is investigated.

1.
Humphries
,
W. R.
, and
Griggs
,
E. L.
, 1974,
A Design Handbook of Phase Change Thermal Control and Energy Storage Devices
,
NASA
, Greenbelt, MD.
2.
Yao
,
L. S.
, and
Prusa
,
J.
, 1989, “
Melting and Freezing
,”
Adv. Heat Transfer
0065-2717,
19
, pp.
1
95
.
3.
Alexiades
,
V.
, and
Solomon
,
A. D.
, 1993,
Mathematical Modeling of Melting and Freezing Processes
,
Hemisphere
, Washington, D.C.
4.
Viskanta
,
R.
, 1991, “
Phase Change Heat Transfer in Porous Media
,”
Proceedings of 3rd International Symposium on Cold Region Heat Transfer
, Fairbanks, AK, June 11–14, pp.
1
24
.
5.
Jany
,
P.
, and
Bejan
,
A.
, 1988, “
Scaling of Melting with Natural Convection in an Enclosure
,”
Int. J. Heat Mass Transfer
0017-9310,
31
, pp.
1221
1235
.
6.
Gau
,
C.
, and
Viskanta
,
R.
, 1986, “
Melting and Solidification of a Pure Metal on a Vertical Wall
,”
ASME J. Heat Transfer
0022-1481,
108
, pp.
174
181
.
7.
Hasan
,
M.
,
Majumdar
,
A. S.
, and
Weber
,
M. E.
, 1991, “
Cyclic Melting and Freezing
,”
Chem. Eng. Sci.
0009-2509,
46
, pp.
1573
1587
.
8.
Yimer
,
B.
, 1997, “
Phase Change Heat Transfer During Cyclic Heating and Cooling with Internal Radiation and Temperature Dependent Properties
,”
Proceedings of National Heat Transfer Conference
, Baltimore, August 8–12, ASME, New York, HTD-Vol.
342
, pp.
141
146
.
9.
Lu
,
T. J.
, 2000, “
Thermal Management of High Power Electronics with Phase Change Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
2245
2256
.
10.
Evans
,
A. G.
,
He
,
M. Y.
,
Hutchinson
,
J. W.
, and
Shaw
,
M.
, 2001, “
Temperature Distribution in Advanced Power Electronics Systems and the Effect of Phase Change Materials on Temperature Suppression During Power Pulses
,”
ASME J. Electron. Packag.
1043-7398,
123
, pp.
211
217
.
11.
Pal
,
D.
, and
Joshi
,
Y.
, 1997, “
Application of Phase Change Materials to Thermal Control of Electronic Modules: A Computational Study
,”
ASME J. Electron. Packag.
1043-7398,
119
, pp.
40
50
.
12.
Shatikian
,
V.
,
Dubovsky
,
V.
,
Ziskind
,
G.
, and
Letan
,
R.
, 2003, “
Simulation of PCM Melting and Solidification in a Partitioned Storage Unit
,” ASME Paper No. HT2003-47167.
13.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, 2004, “
A Two-Temperature Model for Analysis of Passive Thermal Control Systems
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
628
637
.
14.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, 2005, “
A Two-Temperature Model for Solid-Liquid Phase Change in Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
995
1004
.
15.
Vesligaj
,
M. J.
, and
Amon
,
C. H.
, 1999, “
Transient Thermal Management of Temperature Fluctuations during Time Varying Workloads on Portable Electronics
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
22
, pp.
541
550
.
16.
Alawadhi
,
E. M.
, and
Amon
,
C. H.
, 2000, “
Performance Analysis of an Enhanced PCM Thermal Control Unit
,”
Proceedings of ITherm 2000
, Las Vegas, NV, May 24–26, pp.
283
289
.
17.
Baker
,
K. W.
,
Jang
,
J. H.
, and
Yu
,
J. S.
, 1995, “
Thermal Control of Phase Change Package with Periodic Pulse Heating—A Case Study
,”
Proceedings of ASME/JSME Thermal Engineering Conference
, Maui, HI, March 19–24, ASME, New York,
4
, pp.
463
469
.
18.
Pal
,
D.
, and
Joshi
,
Y.
, 1999, “
Thermal Control of Horizontal Mounted Heat Sources using Phase Change Materials
,”
Adv. Electron. Packag.
,
26
, pp.
1625
-
1630
.
19.
Harris
,
K. T.
,
Haji-Sheikh
,
A.
, and
Agwu Nnanna
,
A. G.
, 2001, “
Phase-Change Phenomena in Porous Media—A Non-Local Thermal Equilibrium Model
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1619
1625
.
20.
Krishnan
,
S.
, and
Garimella
,
S. V.
, 2004, “
Analysis of a Phase Change Energy Storage System for Pulsed Power Dissipation
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
27
(
1
), pp.
191
199
.
21.
Hwang
,
J. J.
,
Hwang
,
G. J.
,
Yeh
,
R. H.
, and
Chao
,
C. H.
, 2002, “
Measurement of Interstitial Convective Heat Transfer Coefficient and Frictional Drag for Flow Across Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
120
129
.
22.
Morgan
,
V. T.
, 1975, “
The Overall Convective Heat Transfer from Smooth Circular Cylinders
,”
Adv. Heat Transfer
0065-2717,
11
, pp.
199
264
.
You do not currently have access to this content.