Significant heat transfer issues associated with four alternative hydrogen storage methods are identified and discussed, with particular emphasis on technologies for vehicle applications. For compressed hydrogen storage, efficient heat transfer during compression and intercooling decreases compression work. In addition, enhanced heat transfer inside the tank during the fueling process can minimize additional compression work. For liquid hydrogen storage, improved thermal insulation of cryogenic tanks can significantly reduce energy loss caused by liquid boil-off. For storage systems using metal hydrides, enhanced heat transfer is essential because of the low effective thermal conductivity of particle beds. Enhanced heat transfer is also necessary to ensure that both hydriding and dehydriding processes achieve completion and to prevent hydride bed meltdown. For hydrogen storage in the form of chemical hydrides, innovative vehicle cooling design will be needed to enable their acceptance.

1.
U.S. Department of Energy, Office of Basic Energy Sciences
, 2003,
Basic Research Needs for the Hydrogen Economy
, http://www.sc.doe.gov/bes/hydrogen.pdfhttp://www.sc.doe.gov/bes/hydrogen.pdf
2.
U.S. Department of Energy, Basic Energy Sciences Advisory Committee
, 2003,
Basic Research Needs to Assure a Secure Energy Future
, http://www.sc.doe.gov/bes/BESAC/Basic_Research_Needs_To_Assure_A_Secure_Energy_Future_FEB2003.pdfhttp://www.sc.doe.gov/bes/BESAC/Basic_Research_Needs_To_Assure_A_Secure_Energy_Future_FEB2003.pdf
3.
U.S. Department of Energy, Office of Hydrogen, Fuel Cells, and Infrastructure Technologies
, 2003,
Multi-Year Research, Development and Demonstration Plan
, http://www.eere.energy.gov/hydrogenandfuelcells/mypp/http://www.eere.energy.gov/hydrogenandfuelcells/mypp/
4.
National Research Council and National Academy of Engineering
, 2004,
The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs
,
The National Academies Press
, Washington, DC.
5.
Mukherjee
,
S.
, and
Mudawar
,
I.
, 2003, “
Pumpless Loop for Narrow Channel and Micro-Channel Boiling From Vertical Surfaces
,”
ASME J. Electron. Packag.
1043-7398,
125
, pp.
431
441
.
6.
Mukherjee
,
S.
, and
Mudawar
,
I.
, 2003, “
Smart, Low-Cost, Pumpless Loop for Micro-Channel Electronic Cooling using Flat and Enhanced Surfaces
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
26
, pp.
99
109
.
7.
Zuttel
,
A.
, 2003, “
Materials for Hydrogen Storage
,”
Mater. Today
1369-7021,
6
(
9
), pp.
24
33
.
8.
Zhou
,
L.
, 2005, “
Progress and Problems in Hydrogen Storage Methods
,”
Renewable Sustainable Energy Rev.
1364-0321,
9
(
4
), pp.
395
408
.
9.
Sarkar
,
A.
, and
Banerjee
,
R.
, 2005, “
Net Energy Analysis of Hydrogen Storage Options
,”
Int. J. Hydrogen Energy
0360-3199,
30
(
8
), pp.
867
877
.
10.
Grochala
,
W.
, and
Edwards
,
P. P.
, 2004, “
Thermal Decomposition of the Non-Interstitial Hydrides for the Storage and Production of Hydrogen
,”
Chem. Rev. (Washington, D.C.)
0009-2665,
104
(
3
), pp.
1283
1315
.
11.
Ritter
,
J. A.
,
Ebner
,
A. D.
,
Wang
,
J.
, and
Zidan
,
R.
, 2003, “
Implementing a Hydrogen Economy
,”
Mater. Today
1369-7021,
6
(
9
), pp.
18
23
.
12.
Fakioglu
,
E.
,
Yurum
,
Y.
, and
Nejat Veziroglu
,
T.
, 2004, “
A Review of Hydrogen Storage Systems Based on Boron and Its Compounds
,”
Int. J. Hydrogen Energy
0360-3199,
29
(
13
), pp.
1371
1376
.
13.
Hirscher
,
M.
,
Becher
,
M.
,
Haluska
,
M.
,
Zeppelin
,
F. V.
,
Chen
,
X. H.
,
Dettlaff-Weglikowska
,
U.
, and
Roth
,
S.
, 2003, “
Are Carbon Nanostructures an Efficient Hydrogen Storage Medium?
J. Alloys Compd.
0925-8388,
356–357
, pp.
433
437
.
14.
Irani
,
R. S.
, 2002, “
Hydrogen Storage: High-Pressure Gas Containment
,”
MRS Bull.
0883-7694,
27
(
9
), pp.
680
682
.
15.
Newell
,
K.
, 2004, “
Low Cost, High Efficiency, High Pressure Hydrogen Storage
,”
Proc. 2004 Annual U.S. DOE Hydrogen Program Review
, http://www.eere.energy.gov/hydrogenandfuelcells/2004_annual_review.htmlhttp://www.eere.energy.gov/hydrogenandfuelcells/2004_annual_review.html
16.
Funck
,
R.
, 2003, “
High Pressure Storage
,”
Handbook of Fuel Cells—Fundamentals, Technology and Applications
,
Vielstich
,
W.
,
Gasteiger
,
H. A.
, and
Lamm
,
A.
Eds.,
John Wiley & Sons
, Hoboken, NJ, Vol.
3
, pp.
83
88
.
17.
Gambone
,
L.
, and
Herr
,
M.
, 2005, “
Performance Testing of 700bar Hydrogen Vehicle Fuel System Components
,”
Proc. National Hydrogen Association Annual Conference
, Washington, DC.
18.
Çengel
,
Y. A.
, and
Boles
,
M. A.
, 2002,
Thermodynamics: An Engineering Approach
,
McGraw-Hill Higher Education
, New York, pp.
337
338
.
19.
PPI, Inc.
Data Sheet for 4LX Diaphragm Compressor
, http://www.gotoppi.com/http://www.gotoppi.com/
20.
Tzimas
,
E.
,
Filiou
,
C.
,
Peteves
,
S. D.
, and
Veyret
,
J. B.
,
Hydrogen Storage: State-of-the-art and Future Perspective
, Institute for Energy, Directorate General Joint Research Centre, The Netherlands, http://www.jrc.nl/publ/P2003-181=EUR20995EN.pdfhttp://www.jrc.nl/publ/P2003-181=EUR20995EN.pdf
21.
Venki
,
R.
, 2003, “
The Hydrogen Fuel Infrastructure for Fuel Cell Vehicles
,”
Energy and Transportation: Challenges for the Chemical Sciences in the 21st Century
,
The National Academies Press
, Washington, DC.
22.
Hsieh
,
W. H.
, and
Wu
,
T. T.
, 1996, “
Experimental Investigation of Heat Transfer in a High-Pressure Reciprocating Gas Compressor
,”
Exp. Therm. Fluid Sci.
0894-1777,
13
, pp.
44
54
.
23.
Recktenwald
,
G. W.
,
Ramsey
,
J. W.
, and
Patankar
,
S. V.
, 1986, “
Predictions of Heat Transfer in Compressor Cylinders
,”
Proceedings of the 1986 International Compressor Engineering Conference
, Purdue,
West Lafayette
, IN, Vol.
1
, pp.
159
174
.
24.
Keribar
,
R.
, and
Morel
,
T.
, 1988, “
Heat Transfer and Component Temperature Prediction in Reciprocating Compressors
,”
Proceedings of the 1988 International Compressor Engineering Conference
, Purdue,
West Lafayette
, IN, Vol.
2
, pp.
454
463
.
25.
Yong
,
K.
, 1988, “
Calculation of the Heat and Mass Transfer in Reciprocating Compressor With Spraying Water Into Cylinders
,”
Proceedings of the 1988 International Compressor Engineering Conference
, Purdue,
West Lafayette
, IN, Vol.
2
, pp.
472
476
.
26.
Hydro-Pac, Inc.
,
High-Pressure Hydrogen Compressor Data Sheet
, http://www.hydropac.com/http://www.hydropac.com/
27.
Bailyn
,
M.
, 1994,
A Survey of Thermodynamics
,
AIP Press
, New York.
28.
Yong
,
K.
, 1986, “
The Intercooler With Spraying Water for Air Compressors
,”
Proceedings of the 1986 International Compressor Engineering Conference
, Purdue,
West Lafayette
, IN, Vol.
1
, pp.
153
158
.
29.
Richards
,
M. E.
,
Liss
,
W.
, and
Kountz
,
K.
, 2002, “
Natural Gas Reformer-Based Hydrogen Fueling Station Modeling
,”
Proceedings of the 8th International Conference of Natural Gas Vehicles
, Washington, DC.
30.
Campbell
,
K.
,
Cohen
,
J.
,
Eichelberger
,
D.
, and
Hansel
,
J.
, 2003, “
Hydrogen Fueling Safety Advances
,”
The 20th International Electric Vehicle Symposium and Exposition
, Long Beach, CA.
31.
Schneider
,
J.
,
Suckow
,
T.
,
Lynch
,
F.
,
Ward
,
J.
,
Caldwell
,
M.
,
Tillman
,
J.
,
Mathison
,
S.
,
Stephanian
,
G.
,
Richards
,
M.
,
Liss
,
B
,
Quong
,
S.
,
Durán
,
A.
,
Friedlmeier
,
G.
,
Maus
,
S.
,
King
,
J.
,
Canteen Walla
,
Z.
,
Moorhead
,
B.
,
Adler
,
R.
,
Chernicoff
,
W.
,
Sloane
,
C.
,
Steele
,
M.
, and
Cherry
,
J.
, 2005, “
Optimizing Hydrogen Vehicle Fueling
,”
Proceedings of the National Hydrogen Association Annual Conference
, Washington, DC.
32.
Jacobsen
,
R. T.
,
Penoncello
,
S. G.
, and
Lemmon
,
E. W.
, 1997,
Thermodynamic Properties of Cryogenic Fluids
,
Plenum Press
, New York.
33.
Nilsen
,
S.
,
Andersen
,
S. H.
,
Haugom
,
G. P.
, and
Rikheim
,
H.
, 2003, “
Risk Assessments of Hydrogen Refueling Station Concepts Based on Onsite Production
,”
The 1st European Hydrogen Energy Conference & Exhibition (EHEC)
, Grenoble, France.
34.
Taylor
,
J. B.
,
Alderson
,
J. E. A.
,
Kalyanam
,
K. M.
,
Lyle
,
A. B.
, and
Phillips
,
L. A.
, 1986, “
Technical and Economic Assessment of Methods for the Storage of Large Quantities of Hydrogen
,”
Int. J. Hydrogen Energy
0360-3199,
11
(
1
), pp.
5
22
.
35.
Amos
,
W. A.
, 1998,
Costs of Storing and Transporting Hydrogen
, National Renewable Energy Laboratory Report, NREL/TP-570–25106.
36.
Timmerhaus
,
K. D.
, and
Flynn
,
T. M.
, 1989,
Cryogenic Process Engineering
,
Plenum Press
, New York.
37.
Newton
,
C. L.
, 1967, “
Hydrogen Production, Liquefaction and Use
,”
Cryogen. Eng. News
,
2
(
8
), pp.
50
60
.
38.
Newton
,
C. L.
, 1967, “
Hydrogen Production, Liquefaction and Use
,”
Cryogen. Eng. News
,
2
(
9
), pp.
24
30
.
39.
Baker
,
C. R.
, and
Shaner
,
R. L.
, 1978, “
A Study of the Efficiency of Hydrogen Liquefaction
,”
Int. J. Hydrogen Energy
0360-3199,
3
(
3
), pp.
321
334
.
40.
Bossel
,
U.
,
Eliasson
,
B.
, and
Taylor
,
G.
, 2003, “
The Future of the Hydrogen Economy: Bright or Bleak?
2003 European Fuel Cell Forum
, Lucerne, Switzerland, http://www.efcf.com/reports/E08.pdfhttp://www.efcf.com/reports/E08.pdf
41.
Barron
,
R. F.
, 1999,
Cryogenic Heat Transfer
,
Taylor & Francis
, Philadelphia, PA.
42.
Flynn
,
T. M.
, 1997,
Cryogenic Engineering
,
Marcel Dekker, Inc.
, New York.
43.
Reijerkerk
,
J.
, 2005, “
Potential of Cryogenic Hydrogen Storage in Vehicles
,”
Proc. National Hydrogen Association Annual Conference
, Washington, DC.
44.
Wolf
,
J.
, 2002, “
Liquid-Hydrogen Technology for Vehicles
,”
MRS Bull.
0883-7694,
27
(
9
), pp.
684
687
.
45.
Wolf
,
J.
, 2003, “
Liquid Hydrogen Technology for Vehicles
,”
Handbook of Fuel Cells—Fundamentals, Technology and Applications
,
Vielstich
,
W.
,
Gasteiger
,
H. A.
, and
Lamm
,
A.
Eds.,
John Wiley & Sons
, Hoboken, NJ, Vol.
3
, pp.
89
100
.
46.
Sherif
,
S. A.
,
Zeytinoglu
,
N.
, and
Veziroğlu
,
T. N.
, 1997, “
Liquid Hydrogen: Potential, Problems, and a Proposed Research Program
,”
Int. J. Hydrogen Energy
0360-3199,
22
(
7
), pp.
683
688
.
47.
Zhou
,
L.
,
Zhou
,
Y.
, and
Sun
,
Y.
, 2004, “
Enhanced Storage of Hydrogen at the Temperature of Liquid Nitrogen
,”
Int. J. Hydrogen Energy
0360-3199,
29
(
3
), pp.
319
322
.
48.
Perfect
,
S.
,
Weisberg
,
A.
, and
Aceves
,
S. M.
, 2004, “
Optimum Utilization of Available Space in a Vehicle Through Conformable Hydrogen Tanks
,”
Proceedings of the 2004 Annual U.S. DOE Hydrogen Program Review
.
49.
Sandrock
,
G.
, 2003, “
Hydride Storage
,”
Handbook of Fuel Cells—Fundamentals, Technology and Applications
,
Vielstich
,
W.
,
Gasteiger
,
H. A.
, and
Lamm
,
A.
Eds.,
John Wiley & Sons
, Hoboken, NJ, Vol.
3
, pp.
101
112
.
50.
Sandrock
,
G.
, and
Thomas
,
G.
,
Hydride Information Center
, http://hydpark.ca.sandia.govhttp://hydpark.ca.sandia.gov
51.
Heung
,
L. K.
, 2003,
Using Metal Hydride to Store Hydrogen
, DOE report: WSRC-MS-2003-00172.
52.
Chen
,
Y.
,
Sequeira
,
C. A. C.
,
Chen
,
C.
,
Wang
,
X.
, and
Wang
,
Q.
, 2003, “
Metal Hydride Beds and Hydrogen Supply Tanks as Minitype PEMFC Hydrogen Sources
,”
Int. J. Hydrogen Energy
0360-3199,
28
(
3
), pp.
329
333
.
53.
Story
,
G. C.
, 2000, “
Hydride Bed/Fuelcell Project
,”
Proceedings of the 2000 Hydrogen Program Review
, NREL/CP-570–28890, http://www.eere.energy.gov/hydrogenandfuelcells/annual_review2000.htmlhttp://www.eere.energy.gov/hydrogenandfuelcells/annual_review2000.html
54.
Sandrock
,
G.
,
Gross
,
K.
,
Thomas
,
G.
,
Jensen
,
C.
,
Meeker
,
D.
, and
Takara
,
S.
, 2002, “
Engineering Considerations in the Use of Catalyzed Sodium Alanates for Hydrogen Storage
,”
J. Alloys Compd.
0925-8388,
330–332
, pp.
696
701
.
55.
Anton
,
D. L.
,
Mosher
,
D. A.
, and
Opalka
,
S. M.
, 2004, “
High Density Hydrogen Storage System Demonstration Using NaAlH4 Complex Compound Hydrides
,”
Proceedings of the 2004 Annual U.S. DOE Hydrogen Program Review
.
56.
Ahluwalia
,
R.
, and
Kumar
,
R.
, 2005, “
Metal-Hydride Hydrogen Storage for Automotive Fuel Cell Systems
,”
Proceedings of the National Hydrogen Association Annual Conference
, Washington, DC.
57.
Rodriguez Sanchez
,
A.
,
Klein
,
H.-P.
, and
Groll
,
M.
, 2003, “
Expanded Graphite as Heat Transfer Matrix in Metal Hydride Beds
,”
Int. J. Hydrogen Energy
0360-3199,
28
(
5
), pp.
515
527
.
58.
Kim
,
K. J.
,
Montoya
,
B.
,
Razani
,
A.
, and
Lee
,
K.-H.
, 2001, “
Metal Hydride Compacts of Improved Thermal Conductivity
,”
Int. J. Hydrogen Energy
0360-3199,
26
(
6
), pp.
609
613
.
59.
Oi
,
T.
,
Maki
,
K.
, and
Sakaki
,
Y.
, 2004, “
Heat Transfer Characteristics of the Metal Hydride Vessel Based on the Plate-Fin Type Heat Exchanger
,”
J. Power Sources
0378-7753,
125
(
1
), pp.
52
61
.
60.
Gadre
,
S. A.
,
Ebner
,
A. D.
,
Al-Muhtaseb
,
S. A.
, and
Ritter
,
J. A.
, 2003, “
Practical Modeling of Metal Hydride Hydrogen Storage Systems
,”
Ind. Eng. Chem. Res.
0888-5885,
42
(
8
), pp.
1713
1722
.
61.
Klein
,
H.-P.
, and
Groll
,
M.
, 2004, “
Heat Transfer Characteristics of Expanded Graphite Matrices in Metal Hydride Beds
,”
Int. J. Hydrogen Energy
0360-3199,
29
(
14
), pp.
1503
1511
.
62.
Kaviany
,
K.
, 1995,
Principles of Heat Transfer in Porous Media
,
Springer
, New York.
63.
Asakuma
,
Y.
,
Miyauchi
,
S.
,
Yamamoto
,
T.
,
Aoki
,
H.
, and
Miura
,
T.
, 2004, “
Homogenization Method for Effective Thermal Conductivity of Metal Hydride Bed
,”
Int. J. Hydrogen Energy
0360-3199,
29
(
2
), pp.
209
216
.
64.
Wang
,
J.
, 2004, “
Hydride Development for Hydrogen Storage
,”
Proceedings of the 2004 Annual U.S. DOE Hydrogen Program Review
.
65.
Bogdanović
,
B.
, and
Schwickardi
,
M.
, 1997, “
Ti-Doped Alkali Metal Aluminum Hydrides as Potential Novel Reversible Hydrogen Storage Materials
,”
J. Alloys Compd.
0925-8388,
253–254
, pp.
1
9
.
66.
Bogdanović
,
B.
,
Brand
,
R. A.
,
Marjanović
,
A.
,
Schwickardi
,
M.
, and
Tölle
,
J.
, 2000, “
Metal-Doped Sodium Aluminum Hydrides as Potential New Hydrogen Storage Materials
,”
J. Alloys Compd.
0925-8388,
302
, pp.
36
58
.
67.
Anton
,
D. L.
,
Opalka
,
S. M.
,
Tang
,
X.
,
Mosher
,
D. A.
,
Zidan
,
R.
,
Motyka
,
T.
,
Hauback
,
B.
,
Brinks
,
H.
,
Lovvik
,
O. M.
,
Strickler
,
J.
,
Wu
,
F.-J. R.
, and
Boone
,
J. E.
, 2004, “
Complex Hydride Compounds With Enhanced Hydrogen Storage Capacity
,”
Proceedings of the 2004 Annual U.S. DOE Hydrogen Program Review
.
68.
Ritter
,
J. A.
,
Ebner
,
A. D.
,
Gadre
,
S. A.
,
Prozorov
,
T.
, and
Wang
,
J.
, 2004, “
Development of Complex Hydride Hydrogen Storage Materials and Engineering Systems
,”
Proceedings of the 2004 Annual U.S. DOE Hydrogen Program Review
.
69.
Sachtler
,
J. W. A.
, 2004, “
Discovery of Novel Complex Metal Hydrides for Hydrogen Storage Through Molecular Modeling and Combinatorial Methods
,”
Proceedings of the 2004 Annual U.S. DOE Hydrogen Program Review
.
70.
Baitalow
,
F.
,
Baumann
,
J.
,
Wolf
,
G.
,
Jaenicke-Robler
,
K.
, and
Leitner
,
G.
, 2002, “
Thermal Decomposition of B-N-H Compounds Investigated by Using Combined Thermoanalytical Methods
,”
Thermochim. Acta
0040-6031,
391
(
1–2
), pp.
159
168
.
71.
Autrey
,
T.
,
Gutowska
,
A.
,
Li
,
L.
,
Gutowski
,
M.
, and
Linehan
,
J.
, 2004, “
Chemical Hydrogen Storage: Control of H2 Release From Release From Ammonia Ammonia Borane
,”
Proceedings of the 2004 Annual U.S. DOE Hydrogen Program Review
.
72.
Luo
,
W. F.
,
Gross
,
K.
,
Ronnebro
,
E.
, and
Wang
,
J.
, 2005, “
Metal-N-H New Promising Hydrogen Storage Materials
,”
Proceedings of the National Hydrogen Association Annual Conference
, Washington, DC.
73.
Jensen
,
C. M.
,
Srinivasan
,
S.
,
Sun
,
D.
,
Wang
,
P.
,
Sulic
,
M.
, and
Kuba
,
M.
, 2004, “
Doped Sodium Aluminum Hydride: Fundamental Studies and Development of Related Hydrogen Storage Materials
,”
Proceedings of the 2004 Annual U.S. DOE Hydrogen Program Review
.
74.
Danko
,
E.
, 2005, “
Hydrogen Technology at the Savannah River National Laboratory
,”
Proceedings of the National Hydrogen Association Annual Conference
, Washington, DC.
75.
Hall
,
M. M.
, and
Shelby
,
J. E.
, 2005, “
Hollow Glass Microspheres for Hydrogen Gas Storage
,”
Proceedings of the National Hydrogen Association Annual Conference
, Washington, DC.
76.
Hahne
,
E.
, and
Kallweit
,
J.
, 1998, “
Thermal Conductivity of Metal Hydride Materials for Storage of Hydrogen: Experimental Investigation
,”
Int. J. Hydrogen Energy
0360-3199,
23
(
2
), pp.
107
114
.
77.
Askri
,
F.
,
Jemni
,
A.
, and
Ben Nasrallah
,
S.
, 2003, “
Study of Two-Dimensional and Dynamic Heat and Mass Transfer in a Metal-Hydrogen Reactor
,”
Int. J. Hydrogen Energy
0360-3199,
28
(
5
), pp.
537
557
.
78.
Askri
,
F.
,
Jemni
,
A.
, and
Nasrallah
,
S. B.
, 2004, “
Prediction of Transient Heat and Mass Transfer in a Closed Metal-Hydrogen Reactor
,”
Int. J. Hydrogen Energy
0360-3199,
29
(
2
), pp.
195
208
.
79.
Asakum
,
Y.
,
Miyauchi
,
S.
,
Yamamoto
,
T.
,
Aoki
,
H.
, and
Miura
,
T.
, 2003, “
Numerical Analysis of Absorbing and Desorbing Mechanism for the Metal Hydride by Homogenization Method
,”
Int. J. Hydrogen Energy
0360-3199,
28
(
5
), pp.
529
536
.
80.
Nakagawa
,
T.
,
Inomata
,
A.
,
Aoki
,
H.
, and
Miura
,
T.
, 2000, “
Numerical Analysis of Heat and Mass Transfer Characteristics in the Metal Hydride Bed
,”
Int. J. Hydrogen Energy
0360-3199,
25
(
4
), pp.
339
350
.
81.
Guo
,
Z.
, and
Sung
,
H. J.
, 1999, “
Technical Note Conjugate Heat and Mass Transfer in Metal Hydride Beds in the Hydriding Process
,”
Int. J. Heat Mass Transfer
0017-9310,
42
(
2
), pp.
379
382
.
82.
Georgiadis
,
J. G.
, 1990, “
Future Research Needs in Convective Heat and Mass Transport in Porous Media
,”
Convective Heat and Mass Transfer in Porous Media
,
Kakac
,
S.
,
Kilkis
,
B.
,
Kulacki
,
F. A.
, and
Arinc
,
F.
, Eds.,
Kluwer Academic Publishers
, Boston, pp.
1073
1088
.
83.
James
,
B. D.
, 2003, “
An Overview of Chemical Hydrides
,”
ORNL Hydrogen Storage Workshop
, http://www.ms.ornl.gov/hsw/presentation/May7/BJAMES1.PPThttp://www.ms.ornl.gov/hsw/presentation/May7/BJAMES1.PPT
84.
Cooper
,
A. C.
, and
Pez
,
G. P.
, 2004, “
Hydrogen Storage by the Reversible Hydrogenation of Liquid and Solid Substrates
,”
Proceedings of the 2004 Annual U.S. DOE Hydrogen Program Review
.
85.
McClaine
,
A. W.
, 2004, “
Chemical Hydride Slurry for Hydrogen Production and Storage
,”
Proceedings of the 2004 Annual U.S. DOE Hydrogen Program Review
.
86.
Dipietro
,
J. P.
, and
Skolnik
,
E. G.
, 2000, “
Analysis of Sodium-Hydride-Based Hydrogen Storage System
,”
Proceedings of the the 2000 DOE Hydrogen Program Review
, NREL/CP-570–28890.
87.
Hyde
,
J.
, 2001, “
Chrysler Offers Fuel Cell Van With Soapy Twist
,” Reuters World Environment News, http://www.planetark.org/dailynewsstory.cfm/newsid/13671/story.htmhttp://www.planetark.org/dailynewsstory.cfm/newsid/13671/story.htm, December 12.
88.
Brown
,
H. C.
, and
Brown
,
C. A.
, 1962, “
New, Highly Active Metal Catalysts for the Hydrolysis of Borohydride
,”
J. Am. Chem. Soc.
0002-7863,
84
, pp.
1493
1494
.
89.
Schlesinger
,
H. I.
,
Brown
,
H. C.
,
Finholt
,
A. E.
,
Gilbreath
,
J. R.
,
Hoekstra
,
H. R.
, and
Hyde
,
E. K.
, 1953, “
Sodium Borohydride, Its Hydrolysis and Its Use as a Reducing Agent and in the Generation of Hydrogen
,”
J. Am. Chem. Soc.
0002-7863,
75
, pp.
215
219
.
90.
Amendola
,
S. C.
,
Sharp-Goldman
,
S. L.
,
Janjua
,
M. S.
,
Spencer
,
N. C.
,
Kelly
,
M. T.
,
Petillo
,
P. J.
, and
Binder
,
M.
, 2000, “
An Ultrasafe Hydrogen Generator: Aqueous, Alkaline Borohydride Solutions and Ru Catalyst
,”
J. Power Sources
0378-7753,
85
(
2
), pp.
186
189
.
91.
Amendola
,
S. C.
,
Sharp-Goldman
,
S. L.
,
Janjua
,
M. S.
,
Spencer
,
N. C.
,
Kelly
,
M. T.
,
Petillo
,
P. J.
, and
Binder
,
M.
, 2000, “
A Safe, Portable, Hydrogen Gas Generator Using Aqueous Borohydride Solution and Ru Catalyst
,”
Int. J. Hydrogen Energy
0360-3199,
25
(
10
), pp.
969
975
.
92.
Suda
,
S.
, 2003, “
Aqueous Borohydride Solutions
,”
Handbook of Fuel Cells—Fundamentals, Technology and Applications
,
Vielstich
,
W.
,
Gasteiger
,
H. A.
, and
Lamm
,
A.
, Eds.,
John Wiley & Sons
, Hoboken, NJ, Vol.
3
, pp.
115
120
.
93.
Ju
,
H.
,
Meng
,
H.
, and
Wang
,
C. Y.
, 2004, “
A Single-Phase, Non-Isothermal Model for PEM Fuel Cells
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
7
), pp.
1303
1315
.
94.
Hovland
,
V.
,
Pesaran
,
A.
,
Mohring
,
R. M.
,
Eason
,
I. A.
,
Smith
,
G. M.
,
Tran
,
D.
,
Schaller
,
R.
, and
Smith
,
T.
, 2003, “
Water and Heat Balance in a Fuel Cell Vehicle With Sodium Borohydride Hydrogen Fuel Processor
,” SAE Paper No. 2003–01–2271.
95.
Schlesinger
,
H. I.
,
Brown
,
H. C.
, and
Finholt
,
A. E.
, 1953, “
The Preparation of Sodium Borohydride by the High Temperature Reaction of Sodium Hydride With Borate Esters
,”
J. Am. Chem. Soc.
0002-7863,
75
, pp.
215
209
.
96.
Kojima
,
Y.
, and
Haga
,
T.
, 2003, “
Recycling Process of Sodium Metaborate to Sodium Borohydride
,”
Int. J. Hydrogen Energy
0360-3199,
28
(
9
), pp.
989
993
.
97.
Bingham
,
D.
,
Wendt
,
K.
, and
Wilding
,
B.
, 2004, “
Radiolysis Process for the Regeneration of Sodium Borate to Sodium Borohydride
,”
Proceedings of the 2004 Annual U.S. DOE Hydrogen Program Review
.
98.
Wu
,
Y.
, 2004, “
Low Cost, Off-Board Regeneration of Sodium Borohydride
,”
Proceedings of the 2004 Annual U.S. DOE Hydrogen Program Review
.
99.
Gehres
,
E.
, 1963, “
An Analysis of Engine Cooling in Modern Passenger Cars
,” SAE Paper No. 660c.
100.
Fronk
,
M. H.
,
Wetter
,
D. L.
,
Masten
,
D. A.
, and
Bosco
,
A. D.
, 2000, “
PEM Fuel Cell System Solutions for Transportation
,” SAE Paper No. 2000–01–0373.
101.
Masten
,
D. A.
, and
Bosco
,
A. D.
, 2003, “
System Design for Vehicle Applications: GM/Opel
,”
Handbook of Fuel Cells—Fundamentals, Technology and Applications
,
Vielstich
,
W.
,
Gasteiger
,
H. A.
, and
Lamm
,
A.
, Eds.,
John Wiley & Sons
, Hoboken, NJ, Vol.
4
, pp.
714
724
.
102.
Renn
,
V.
, and
Gilhaus
,
A.
, 1986, “
Aerodynamics of Vehicle Cooling Systems
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
22
(
2–3
), pp.
339
346
.
103.
Komatubara
,
T.
, 1995, “
A Study for Improving Thermal Effectiveness in Automotive Radiators
,”
JSAE Rev.
0389-4304,
16
(
1
), p.
111
.
104.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
,
Ibele
,
W. E.
,
Patankar
,
S. V.
,
Simon
,
T. W.
,
Kuehn
,
T. H.
,
Strykowski
,
P. J.
,
Tamma
,
K. K.
,
Heberlein
,
J. V. R.
,
Davidson
,
J. H.
,
Bischof
,
J.
,
Kulacki
,
F. A.
,
Kortshagen
,
U.
, and
Garrick
,
S.
, 2003, “
Heat Transfer—a Review of 2001 Literature
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
1887
1992
.
You do not currently have access to this content.