The applicability of the isotropic scaling approximation to heat transfer analysis in fibrous medium is discussed. The isotropic scaling model allows the transformation of an anisotropic scattering problem to an isotropic one. The scaled parameters are derived for general anisotropic scattering and for radiative properties dependent of the incidence radiation. Three different isotropic scaling approaches are considered: Directional isotropic scaling, mean isotropic scaling, and P1 isotropic scaling; corresponding to isotropic scaling parameters function of incident radiation, arithmetic mean over all incident direction of radiative properties, and mean on weighted radiative properties, respectively. The discrete ordinate method is used to solve the radiative transfer equation through fibrous medium. The fibers in the medium are randomly oriented either in space or parallel to the boundaries. Numerical results presented for a pure radiation problem show good accuracy on radiative heat flux between the exact solution and solution obtained with both P1 and directional isotropic scaling while using mean isotropic scaling is unsuitable. Using isotropic scaling approximation to model radiative heat transfer is faster than the exact solution and required few quadratures to converge.

1.
Baillis
,
D.
, and
Sacadura
,
J. F.
, 2000, “
Thermal Radiation Properties of Dispersed Media: Theoretical Prediction and Experimental Characterization
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
67
, pp.
327
363
.
2.
Viskanta
,
R.
, and
Mengüc
,
M. P.
, 1989, “
Radiative Transfer in Dispersed Media
,”
Appl. Mech. Rev.
0003-6900,
42
(
9
), pp.
241
259
.
3.
Petrov
,
V. A.
, 1994, “
Solution of Inverse Problems of Radiation Transfer in Semitransparent Scattering Materials Based on the Radiation Diffusion Approximation
,”
High Temp. - High Press.
0018-1544,
26
, pp.
339
351
.
4.
Sacadura
,
J. F.
,
Uny
,
G.
, and
Venet
,
A.
, 1986, “
Models and Experiments for a Radiation Parameter Estimation of Absorbing, Emitting, and Anisotropically Scattering Media
,”
Int. Heat Transfer
,
C. L.
Tien
,
V. P.
Carey
, and
J. K.
Farrell
, eds. Vol.
2
,
Hemisphere
, New York, pp.
565
569
.
5.
Doermann
,
D.
, and
Sacadura
,
J. F.
, 1996, “
Heat Transfer in Open Cell Foam Insulation
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
88
93
.
6.
Lee
,
S. C.
, 1986, “
Radiative Heat Transfer through a Fibrous Medium: Allowance for Fiber Orientation
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
36
(
3
), pp.
253
263
.
7.
Houston
,
R. L.
, and
Korpela
,
S. A.
, 1982, “
Heat Transfer Through Fiberglass Insulation
,”
Proc 7th Int. Heat Transfer Conference
, Vol.
2
, pp.
499
504
.
8.
Kim
,
T. K.
, and
Lee
,
H. S.
, 1988, “
Effect of Anisotropic Scattering on Radiative Heat Transfer in Two-Dimensional Rectangular Enclosures
,”
Int. J. Heat Mass Transfer
0017-9310,
31
(
8
), pp.
1711
1721
.
9.
Hendricks
,
T. J.
, and
Howell
,
J. R.
, 1996, “
Absorption Coefficients and Scattering Phase Functions in Reticulated Porous Ceramics
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
79
87
.
10.
Baillis
,
D.
,
Arduini-Schuster
,
M.
, and
Sacadura
,
J. F.
, 2002, “
Identification of Spectral Radiative Properties of Polyurethane Foam from Hemispherical and Bidirectional Transmittance and Reflectance Measurements
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
73
, pp.
297
306
.
11.
Tong
,
T. W.
,
Sathe
,
S. B.
, and
Peck
,
R. E.
, 1990, “
Improving the Performance of Porous Radiant Burners through Use of Submicron Size Fibers
,”
Int. J. Heat Mass Transfer
0017-9310,
33
(
6
), pp.
1339
1346
.
12.
Litovsky
,
E.
,
Kleiman
,
J. I.
, and
Menn
,
N.
, 2003/2004, “
Measurement and Analysis by Different Methods of Apparent, Radiative, and Conductive Thermophysical Properties of Insulation Materials
,”
High Temp. - High Press.
0018-1544,
35/36
, pp.
101
108
.
13.
Kim
,
T. K.
, and
Lee
,
H. S.
, 1990, “
Modified δ-M Scaling Results for Mie-Anisotropic Scattering Media
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
988
994
.
14.
McKellar
,
H. J.
, and
Box
,
M. A.
, 1981, “
The Scaling Group of the Radiative Transfer Equation
,”
J. Atmos. Sci.
0022-4928,
38
, pp.
1063
1068
.
15.
Lee
,
H.
, and
Buckius
,
R. O.
, 1982, “
Scaling Anisotropic Scattering in Radiation Heat Transfer for a Planar Medium
,”
ASME J. Heat Transfer
0022-1481,
104
, pp.
68
75
.
16.
Joseph
,
J. H.
,
Wiscombe
,
W. J.
, and
Weinman
,
J. A.
, 1976, “
The Delta-Eddington Approximation for Radiative Flux Transfer
,”
J. Atmos. Sci.
0022-4928,
33
, pp.
2452
2459
.
17.
Modest
,
M. F.
, and
Azad
,
F. H.
, 1980, “
The Influence and Treatment of Mie-Anisotropic Scattering in Radiative Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
102
, pp.
92
98
.
18.
Clark
,
G. C.
,
Chu
,
C. M.
, and
Churchill
,
S. W.
, 1957, “
Angular Distribution Coefficients for Radiation Scattered by a Spherical Particle
,”
J. Opt. Soc. Am.
0030-3941,
47
(
1
), pp.
81
84
.
19.
Tong
,
T. W.
, and
Tien
,
C. L.
, 1980, “
Analytical Models for Thermal Radiation in Fibrous Insulations
,”
J. Therm. Insul.
0148-8287,
4
, pp.
27
44
.
20.
Houston
,
R. L.
, 1980, “
Combined Radiation and Conduction in a Nongray Participating Medium that Absorbs, Emits, and Anisotropically Scatters
,” Ph.D thesis, The Ohio State University.
21.
Yuen
,
W. W.
,
Takara
,
E.
, and
Cunnington
,
G.
, 2003, “
Combined Conductive/Radiative Heat Transfer in High Porosity Fibrous Insulation Materials: Theory and Experiment
,”
Proc. 6th ASME-JSME Thermal Engineering Joint Conférence
.
22.
Heino
,
J.
,
Arridge
,
S.
,
Sikora
,
J.
, and
Somersalo
,
E.
, 2003, “
Anisotropic Effects in Highly Scattering Media
,”
Phys. Rev. E
1063-651X,
68
, pp.
031908
.
23.
Dombrovsky
,
L. A.
, 1996, “
Quartz-Fiber Thermal Insulation Infrared Radiative Properties and Calculation of Radiative-Conductive Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
409
414
.
24.
Siegel
,
R.
, and
Howell
,
J. R.
, 1992,
Thermal Radiation Heat Transfer
, 3rd Ed.,
Taylor and Francis
, London.
25.
Kerker
,
M.
, 1969,
The Scattering of Light and other Electromagnetic radiation
,
Academic
, NY.
26.
Lind
,
A. C.
, and
Greeenberg
,
J. M.
, 1966, “
Electromagnetic Scattering for Obliquely Oriented Cylinders
,”
J. Appl. Phys.
0021-8979,
37
(
8
), pp.
3195
3303
.
27.
Lee
,
S. C.
, and
Cunnington
,
G. R.
, 2000, “
Conduction and Radiation Heat Transfer in High-Porosity Fiber Thermal Insulation
,”
Int. J. Heat Mass Transfer
0017-9310,
14
(
2
), pp.
121
136
.
28.
Lee
,
S. C.
, 1990, “
Scattering Phase Function for Fibrous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
33
(
10
), pp.
2183
2190
.
29.
Marschall
,
J.
, and
Milos
,
F. S.
, 1997, “
The Calculation of Anisotropic Extinction Coefficients for Radiation Diffusion in Rigid Fibrous Ceramics Insulations
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
3
), pp.
627
634
.
30.
Hsieh
,
C. K.
, and
Su
,
K. C.
, 1979, “
Thermal Radiative Properties of Glass From 0.32to206μm
,”
Sol. Energy
0038-092X,
22
, pp.
37
43
.
31.
IMSL,
IMSL MATH/LiBRARY Users Manual
, 2500 Park West Tower One.
You do not currently have access to this content.