The heat transfer coefficient at the bottom surface of a splat rapidly solidified on a cold substrate is self-consistently and quantitatively investigated. Provided that the boundary condition at the bottom surface of the splat is specified by introducing the obtained heat transfer coefficient, solutions of the splat can be conveniently obtained without solving the substrate. In this work, the solidification front in the splat is governed by nonequilibrium kinetics while the melting front in the substrate undergoes equilibrium phase change. By solving one-dimensional unsteady heat conduction equations and accounting for distinct properties between phases and splat and substrate, the results show that the time-dependent heat transfer coefficient or Biot number can be divided into five regimes: liquid splat-solid substrate, liquid splat-liquid substrate, nucleation of splat, solid splat-solid substrate, and solid splat-liquid substrate. The Biot number at the bottom surface of the splat during liquid splat cooling increases and nucleation time decreases with increasing contact Biot number, density ratio, and solid conductivity of the substrate, and decreasing specific heat ratio. Decreases in melting temperature and liquid conductivity of the substrate and increase in latent heat ratio further decrease the Biot number at the bottom surface of the splat after the substrate becomes molten. Time-dependent Biot number at the bottom surface of the splat is obtained from a scale analysis. [S0022-1481(00)01004-5]

1.
Anantharaman
,
T. R.
, and
Suryanarayana
,
C.
,
1997
, “
Review: A Decade of Quenching from the Melt
,”
J. Mater. Sci.
,
6
, pp.
1111
1135
.
2.
Jones, H., 1982, “Rapid Solidification of Metals and Alloys,” The Institution of Metallurgists, London, Monograph No. 8.
3.
Zaat
,
J. H.
,
1983
, “
A Quarter of a Century of Plasma Spraying
,”
Annu. Rev. Mater. Sci.
,
13
, pp.
9
42
.
4.
Cahn, R. W., 1983, “Chapter 28 Alloys Rapidly Quenched From the Melt,” Physical Metallurgy, Part 2, 3rd Ed., R. W. Cahn and P. Haasen, eds., Elsevier, New York, pp. 1779–1852.
5.
Frederick
,
D.
, and
Greif
,
R.
,
1985
, “
A Method for the Solution of Heat Transfer Problems With a Change of Phase
,”
ASME J. Heat Transfer
,
107
, pp.
520
526
.
6.
Viskanta
,
R.
,
1988
, “
Heat Transfer During Melting and Solidification of Metals
,”
ASME J. Heat Transfer
,
110
, pp.
1205
1219
.
7.
Turnbull, D., 1949, Thermodynamics in Physical Metallurgy, American Society for Metals, Cleveland, pp. 283–306.
8.
Kurz, W., and Fisher, D. J., 1989, Fundamentals of Solidification, Trans. Tech. Publ., Aedermannsdorf, Switzerland, pp. 220–225.
9.
Levi
,
C. G.
, and
Mehrabian
,
R.
,
1982
, “
Heat Flow During Rapid Solidification of Undercooled Metal Droplets
,”
Metall. Trans. A
,
13A
, pp.
221
234
.
10.
Griffiths
,
W. D.
,
1999
, “
The Heat-Transfer Coefficient During the Unidirectional Solidification of an Al-Si Alloy Casting
,”
Metall. Mater. Trans. B
,
30B
, pp.
473
482
.
11.
Predecki
,
P.
,
Mullendore
,
A. W.
, and
Grant
,
N. J.
,
1965
, “
A Study of the Splat Cooling Technique
,”
Trans. Metall. Soc. AIME
,
233
, pp.
1581
1586
.
12.
Ruhl
,
R. C.
,
1967
, “
Cooling Rates in Splat Cooling
,”
Mater. Sci. Eng.
,
1
, pp.
313
320
.
13.
Shingu
,
P. H.
, and
Ozaki
,
R.
,
1975
, “
Solidification Rate in Rapid Conduction Cooling
,”
Metall. Trans. A
,
6A
, pp.
33
37
.
14.
Clyne
,
T. W.
,
1984
, “
Numerical Treatment of Rapid Solidification
,”
Metall. Trans.
,
15B
, pp.
369
381
.
15.
Wang
,
G.-X.
, and
Matthys
,
E. F.
,
1996
, “
Experimental Investigation of Interfacial Thermal Conductance for Molten Metal Solidification on a Substrate
,”
ASME J. Heat Transfer
,
118
, pp.
157
163
.
16.
Scott
,
M. G.
,
1974
, “
The Effect of a Glass Substrate on Cooling Rate in Splat-Quenching
,”
J. Mater. Sci.
,
9
, pp.
1372
1374
.
17.
Kuijpers
,
T. W.
, and
Zaat
,
J. H.
,
1974
, “
Influence of Oxygen and Cooling Rate on the Microstructure and Microhardness of Plasma-Sprayed Molybdenum
,”
Met. Technol.
,
1
, pp.
142
150
.
18.
Carslaw, H. C., and Jaeger, J. C., 1959, Conduction of Heat in Solids, 2nd Ed., Clarendon Press., Oxford, pp. 87–89.
19.
Steffens
,
H.-D.
,
Wielage
,
B.
, and
Drozak
,
J.
,
1991
, “
Interface Phenomena and Bonding Mechanism of Thermally-Sprayed Metal and Ceramic Composites
,”
Surf. Coat. Technol.
,
45
, pp.
299
308
.
20.
Amon, C. H., Merz, R., Prinz, F. B., and Schmaltz, K. S., 1994, “Thermal Modeling and Experimental Testing of MD* Spray Shape Deposition Processes,” Heat Transfer 1994; ed. G. F Hewitt, Proceedings of Tenth International Heat Transfer Conference, Vol. 7, IChemE Publishing, Brighton, UK, pp. 321–326.
21.
Amon
,
C. H.
,
Schmaltz
,
K. S.
,
Merz
,
R.
, and
Prinz
,
F. B.
,
1996
, “
Numerical and Experimental Investigation of Interface Bonding via Substrate Remelting of an Impinging Molten Metal Droplet
,”
ASME J. Heat Transfer
,
118
, pp.
164
172
.
22.
Wang
,
S.-P.
,
Wang
,
G.-X.
, and
Matthys
,
E. F.
,
1998
, “
Melting and Resolidification of a Substrate in Contact With a Molten Metal: Operational Maps
,”
Int. J. Heat Mass Transf.
,
41
, pp.
1177
1188
.
23.
Wei, P. S., Yeh, F. B., and Chiu, S. H., 2000, “Distinct Property Effects on Rapid Solidification of a Thin Liquid Layer on a Substrate Subject to Melting Affected by Distinct Properties,” J. Heat Trans., submitted for publication.
24.
Ludwig, A., and Frommeyer, G., 1992, “Investigations on the Heat Transfer during PFC-Melt-Spinning by On-Line High-Speed Temperature Measurements,” Melt-Spinning and Strip Castings, E. F., Matthys, ed., TMS, Warrendale, PA, pp. 163–171.
25.
Mizukami
,
H.
,
Suzuki
,
T.
, and
Umeda
,
T.
,
1993
, “
Initial Stage of Rapid Solidification of 18-8 Stainless Steel
,”
Mater. Sci. Eng., A
,
A173
, pp.
361
364
.
26.
Bennett
,
T.
, and
Poulikakos
,
D.
,
1994
, “
Heat Transfer Aspects of Splat-Quench Solidification: Modelling and Experiment
,”
J. Mater. Sci.
,
29
, pp.
2025
2039
.
27.
Liu
,
W.
,
Wang
,
G.-X.
, and
Matthys
,
E. F.
,
1995
, “
Thermal Analysis and Measurements for a Molten Metal Drop Impacting on a Substrate: Cooling, Solidification and Heat Transfer Coefficient
,”
Int. J. Heat Mass Transf.
,
38
, pp.
1387
1395
.
28.
Wang, G.-X., and Matthys, E. F., 1994, “Interfacial Thermal Contact during Rapid Solidification on a Substrate,” Heat Transfer 1994; Proceedings of the Tenth International Heat Transfer Conference, Vol. 4, IChemE Pub., Brighton, UK, pp. 169–174.
29.
Lee
,
S. L.
, and
Tzong
,
R. Y.
,
1991
, “
An Enthalpy Formulation for Phase Change Problems With a Large Thermal Diffusivity Jump Across the Interface
,”
Int. J. Heat Mass Transf.
,
34
, pp.
1491
1502
.
30.
Wang
,
G.-X.
, and
Matthys
,
E. F.
,
1991
, “
Modelling of Heat Transfer and Solidification during Splat Cooling: Effect of Splat Thickness and Splat/Substrate Thermal Contact
,”
Int. J. Rapid Solidif.
,
6
, pp.
141
174
.
You do not currently have access to this content.