Abstract

In this study, the cooling of a gas turbine (GT) blade leading edge using a single row of five impinging air jets was numerically and experimentally investigated. The inner surface of the blade leading edge was depicted as a semicircle profile. The numerical study was performed using a shear stress transport (SST) kω turbulence model. On the other side, the experimental work was conducted using the infrared (IR) thermal camera. Additionally, the heat transfer characteristics were investigated with changing the Reynolds number (Re) from 5000 to 40,000. The study was carried out for different cases based on the jet diameter (d), named as fixed diameter (FD) and variable jet diameter in the streamwise flow direction, i.e., ascending diameter (AD) and descending diameter (DD). The local and average Nusselt numbers and heat transfer uniformity were studied at different operating and design parameters. The results revealed that for FD, increasing the jet diameter decreased the average Nusselt number while it enhanced the heat transfer uniformity. Furthermore, for all values of Re, the thermal performance of the AD was better than the DD, which has the worst heat transfer uniformity. Finally, predicted developed correlations to estimate the average Nusselt number, surface heat transfer uniformity, and performance evaluation factor (PEF) for all cases of jet diameter were introduced.

References

1.
Gorelov
,
Y. G.
, and
Gorelova
,
D. V.
,
2013
, “
Three-Dimensional Numerical Studies of a Jet Airflow Around the Duct Platforms of the Turbine Nozzle Clusters
,”
Russ. Aeronaut.
,
56
(
1
), pp.
59
67
.10.3103/S10687998130100091
2.
Liu
,
Z.
,
Feng
,
Z.
, and
Song
,
L.
,
2010
, “
Numerical Study of Flow and Heat Transfer of Impingement Cooling on Model of Turbine Blade Leading Edge
,”
ASME
Paper No. GT2010-23711.10.1115/GT2010-23711
3.
Zhou
,
J.
,
Wang
,
X.
,
Li
,
J.
, and
Li
,
Y.
,
2018
, “
Effects of Film Cooling Hole Locations on Flow and Heat Transfer Characteristics of Impingement/Effusion Cooling at Turbine Blade Leading Edge
,”
Int. J. Heat Mass Transfer
,
126
, pp.
192
205
.10.1016/j.ijheatmasstransfer.2018.06.020
4.
Chen
,
G.
,
Liu
,
Y.
,
Rao
,
Y.
,
He
,
J.
, and
Qu
,
Y.
,
2019
, “
Numerical Investigation on Conjugate Heat Transfer of Impingement/Effusion Double-Wall Cooling With Different Crossflow Schemes
,”
Appl. Therm. Eng.
,
155
, pp.
515
524
.10.1016/j.applthermaleng.2019.04.019
5.
Krewinkel
,
R.
,
2013
, “
A Review of Gas Turbine Effusion Cooling Studies
,”
Int. J. Heat Mass Transfer
,
66
, pp.
706
722
.10.1016/j.ijheatmasstransfer.2013.07.071
6.
Chi
,
Z.
,
Liu
,
H.
, and
Zang
,
S.
,
2017
, “
Geometrical Optimization of Nonuniform Impingement Cooling Structure With Variable-Diameter Jet Holes
,”
Int. J. Heat Mass Transfer
,
108
(
Part A
), pp.
549
560
.10.1016/j.ijheatmasstransfer.2016.12.032
7.
Singh
,
D.
,
Premachandran
,
B.
, and
Kohli
,
S.
,
2015
, “
Effect of Nozzle Shape on Jet Impingement Heat Transfer From a Circular Cylinder
,”
Int. J. Therm. Sci.
,
96
, pp.
45
69
.10.1016/j.ijthermalsci.2015.04.011
8.
Guan
,
T.
,
Zhang
,
J.-Z.
, and
Shan
,
Y.
,
2017
, “
Conjugate Heat Transfer on Leading Edge of a Conical Wall Subjected to External Cold Flow and Internal Hot Jet Impingement From Chevron Nozzle—Part 2: Numerical Analysis
,”
Int. J. Heat Mass Transfer
,
106
, pp.
339
355
.10.1016/j.ijheatmasstransfer.2016.10.048
9.
Tepe
,
A. Ü.
,
Arslan
,
K.
,
Arslan
,
K.
, and
Uysal
,
Ü.
,
2019
, “
Effects of Extended Jet Holes to Heat Transfer and Flow Characteristics of the Jet Impingement Cooling
,”
ASME J. Heat Transfer
,
141
(
8
), p.
082202
.10.1115/1.4043893
10.
Attalla
,
M.
,
Maghrabie
,
H. M.
, and
Specht
,
E.
,
2017
, “
Effect of Inclination Angle of a Pair of Air Jets on Heat Transfer Into the Flat Surface
,”
Exp. Therm. Fluid Sci.
,
85
, pp.
85
94
.10.1016/j.expthermflusci.2017.02.023
11.
Zhou
,
J.
,
Wang
,
X.
,
Li
,
J.
, and
Hou
,
W.
,
2019
, “
Comparison Between Impingement/Effusion and Double Swirl/Effusion Cooling Performance Under Different Effusion Hole Diameters
,”
Int. J. Heat Mass Transfer
,
141
, pp.
1097
1113
.10.1016/j.ijheatmasstransfer.2019.07.055
12.
Liu
,
Z.
, and
Feng
,
Z.
,
2011
, “
Numerical Simulation on the Effect of Jet Nozzle Position on Impingement Cooling of Gas Turbine Blade Leading Edge
,”
Int. J. Heat Mass Transfer
,
54
(
23–24
), pp.
4949
4959
.10.1016/j.ijheatmasstransfer.2011.07.008
13.
Liu
,
H.
,
Liu
,
C.
, and
Wu
,
W.
,
2015
, “
Numerical Investigation on the Flow Structures in a Narrow Confined Channel With Staggered Jet Array Arrangement
,”
Chin. J. Aeronaut.
,
28
(
6
), pp.
1616
1628
.10.1016/j.cja.2015.08.017
14.
Fechter
,
S.
,
Terzis
,
A.
,
Ott
,
P.
,
Weigand
,
B.
,
Von Wolfersdorf
,
J.
, and
Cochet
,
M.
,
2013
, “
Experimental and Numerical Investigation of Narrow Impingement Cooling Channels
,”
Int. J. Heat Mass Transfer
,
67
, pp.
1208
1219
.10.1016/j.ijheatmasstransfer.2013.09.003
15.
Jung
,
E. Y.
,
Park
,
C. U.
,
Lee
,
D. H.
,
Kim
,
K. M.
, and
Cho
,
H. H.
,
2018
, “
Effect of the Injection Angle on Local Heat Transfer in a Showerhead Cooling With Array Impingement Jets
,”
Int. J. Therm. Sci.
,
124
, pp.
344
355
.10.1016/j.ijthermalsci.2017.10.033
16.
Yang
,
L.
,
Ren
,
J.
,
Jiang
,
H.
, and
Ligrani
,
P.
,
2014
, “
Experimental and Numerical Investigation of Unsteady Impingement Cooling Within a Blade Leading Edge Passage
,”
Int. J. Heat Mass Transfer
,
71
, pp.
57
68
.10.1016/j.ijheatmasstransfer.2013.12.006
17.
Taghinia
,
J.
,
Rahman
,
M.
, and
Siikonen
,
T.
,
2015
, “
Heat Transfer and Flow Analysis of Jet Impingement on Concave Surfaces
,”
Appl. Therm. Eng.
,
84
, pp.
448
459
.10.1016/j.applthermaleng.2015.03.064
18.
Zhou
,
Y.
,
Lin
,
G.
,
Bu
,
X.
,
Bai
,
L.
, and
Wen
,
D.
,
2017
, “
Experimental Study of Curvature Effects on Jet Impingement Heat Transfer on Concave Surfaces
,”
Chin. J. Aeronaut.
,
30
(
2
), pp.
586
594
.10.1016/j.cja.2016.12.032
19.
Gau
,
C.
, and
Chung
,
C. M.
,
1991
, “
Surface Curvature Effect on Slot-Air-Jet Impingement Cooling Flow and Heat Transfer Process
,”
ASME J. Heat Transfer
,
113
(
4
), pp.
858
864
.10.1115/1.2911214
20.
Fenot
,
M.
,
Dorignac
,
E.
, and
Vullierme
,
J.
,
2008
, “
An Experimental Study on Hot Round Jets Impinging a Concave Surface
,”
Int. J. Heat Fluid Flow
,
29
(
4
), pp.
945
956
.10.1016/j.ijheatfluidflow.2008.03.015
21.
Wang
,
N.
,
Zhang
,
M.
,
Alsaleem
,
S.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2019
, “
Turbine Blade Leading Edge Impingement Cooling From Normal or Tangential Jets With Crossflow Effect
,”
Front. Heat Mass Transfer
,
13
, pp.
1
13
.10.5098/hmt.13.9
22.
Maghrabie
,
H. M.
,
2021
, “
Heat Transfer Intensification of Jet Impingement Using Exciting Jets—A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
139
, p.
110684
.10.1016/j.rser.2020.110684
23.
Wang
,
J.
,
Du
,
C.
,
Wu
,
F.
,
Li
,
L.
, and
Fan
,
X.
,
2019
, “
Investigation of the Vortex Cooling Flow and Heat Transfer Behavior in Variable Cross-Section Vortex Chambers for Gas Turbine Blade Leading Edge
,”
Int. Commun. Heat Mass Transfer
,
108
, p.
104301
.10.1016/j.icheatmasstransfer.2019.104301
24.
Rao
,
Y.
,
Biegger
,
C.
, and
Weigand
,
B.
,
2017
, “
Heat Transfer and Pressure Loss in Swirl Tubes With One and Multiple Tangential Jets Pertinent to Gas Turbine Internal Cooling
,”
Int. J. Heat Mass Transfer
,
106
, pp.
1356
1367
.10.1016/j.ijheatmasstransfer.2016.10.119
25.
Wu
,
F.
,
Li
,
L.
,
Wang
,
J.
,
Fan
,
X.
, and
Du
,
C.
,
2019
, “
Numerical Investigations on Flow and Heat Transfer of Swirl and Impingement Composite Cooling Structures of Turbine Blade Leading Edge
,”
Int. J. Heat Mass Transfer
,
144
, p.
118625
.10.1016/j.ijheatmasstransfer.2019.118625
26.
Liu
,
Z.
,
Ye
,
L.
,
Wang
,
C.
, and
Feng
,
Z.
,
2014
, “
Numerical Simulation on Impingement and Film Composite Cooling of Blade Leading Edge Model for Gas Turbine
,”
Appl. Therm. Eng.
,
73
(
2
), pp.
1432
1443
.10.1016/j.applthermaleng.2014.05.060
27.
Keenan
,
M.
,
Amano
,
R. S.
, and
Ou
,
S.
,
2013
, “
Study of an Impingement Cooling Jet Array for Turbine Blade Cooling With Single and Double Exit Cases
,”
ASME
Paper No. GT2013-94116.10.1115/GT2013-94116
28.
Elebiary
,
K.
, and
Taslim
,
M. E.
,
2013
, “
Experimental/Numerical Crossover Jet Impingement in an Airfoil Leading-Edge Cooling Channel
,”
ASME J. Turbomach.
,
135
(
1
), p.
011037
.10.1115/1.4006420
29.
Ji
,
Y.
,
Singh
,
P.
,
Ekkad
,
S. V.
, and
Zang
,
S.
,
2017
, “
Effect of Crossflow Regulation by Varying Jet Diameters in Streamwise Direction on Jet Impingement Heat Transfer Under Maximum Crossflow Condition
,”
Numer. Heat Transfer, Part A
,
72
(
8
), pp.
579
599
.10.1080/10407782.2017.1394136
30.
Terzis
,
A.
,
Ott
,
P.
,
Cochet
,
M.
,
Von Wolfersdorf
,
J.
, and
Weigand
,
B.
,
2015
, “
Effect of Varying Jet Diameter on the Heat Transfer Distributions of Narrow Impingement Channels
,”
ASME J. Turbomach.
,
137
(
2
), p.
021004
.10.1115/1.4028294
31.
Uysal
,
U.
,
Li
,
P. W.
,
Chyu
,
M. K.
, and
Cunha
,
F. J.
,
2006
, “
Heat Transfer on Internal Surfaces of a Duct Subjected to Impingement of a Jet Array With Varying Jet Hole-Size and Spacing
,”
ASME J. Turbomach.
,
128
(
1
), pp.
158
165
.10.1115/1.2101859
32.
Miller
,
N.
,
Siw
,
S. C.
,
Chyu
,
M. K.
, and
Alvin
,
M. A.
,
2013
, “
Effects of Jet Diameter and Surface Roughness on Internal Cooling With Single Array of Jets
,”
ASME
Paper No. GT2013-95400.10.1115/GT2013-95400
33.
Wen
,
Z. X.
,
He
,
Y. L.
, and
Ma
,
Z.
,
2018
, “
Effects of Nozzle Arrangement on Uniformity of Multiple Impinging Jets Heat Transfer in a Fast Cooling Simulation Device
,”
Comput. Fluids
,
164
, pp.
83
93
.10.1016/j.compfluid.2017.05.012
34.
Attalla
,
M.
,
Maghrabie
,
H. M.
,
Qayyum
,
A.
,
Al-Hasnawi
,
A. G.
, and
Specht
,
E.
,
2017
, “
Influence of the Nozzle Shape on Heat Transfer Uniformity for In-Line Array of Impinging Air Jets
,”
Appl. Therm. Eng.
,
120
, pp.
160
169
.10.1016/j.applthermaleng.2017.03.134
35.
Attalla
,
M.
, and
Specht
,
E.
,
2009
, “
Heat Transfer Characteristics From In-Line Arrays of Free Impinging Jets
,”
Heat Mass Transfer
,
45
(
5
), pp.
537
543
.10.1007/s00231-008-0452-y
36.
Holman
,
J. P.
,
2012
,
Experimental Methods for Engineers, 8th edition,
McGraw-Hill
, New York.
37.
Maghrabie
,
H. M.
,
Attalla
,
M.
,
Fawaz
,
H. E.
, and
Khalil
,
M.
,
2018
, “
Effect of Jet Position on Cooling an Array of Heated Obstacles
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
1
), p.
011005
.10.1115/1.4036788
38.
Wen
,
Z. X.
,
He
,
Y. L.
,
Cao
,
X. W.
, and
Yan
,
C.
,
2016
, “
Numerical Study of Impinging Jets Heat Transfer With Different Nozzle Geometries and Arrangements for a Ground Fast Cooling Simulation Device
,”
Int. J. Heat Mass Transfer
,
95
, pp.
321
335
.10.1016/j.ijheatmasstransfer.2015.12.022
39.
Li
,
W.
,
Xu
,
M.
,
Ren
,
J.
, and
Jiang
,
H.
,
2017
, “
Experimental Investigation of Local and Average Heat Transfer Coefficients Under an Inline Impinging Jet Array, Including Jets With Low Impingement Distance and Inclined Angle
,”
ASME J. Heat Transfer
,
139
(
1
), p.
012201
.10.1115/1.4034165
You do not currently have access to this content.